scispace - formally typeset
Search or ask a question

Showing papers by "Klaus Palme published in 2018"


Journal ArticleDOI
TL;DR: It is shown that in root-hair cells, the AUX1 auxin influx carrier mediates proton-driven auxin import that is perceived by auxin receptors and coupled to Ca2+ waves that may modulate adaptive responses in the root.
Abstract: Auxin is a key regulator of plant growth and development, but the causal relationship between hormone transport and root responses remains unresolved. Here we describe auxin uptake, together with early steps in signaling, in Arabidopsis root hairs. Using intracellular microelectrodes we show membrane depolarization, in response to IAA in a concentration- and pH-dependent manner. This depolarization is strongly impaired in aux1 mutants, indicating that AUX1 is the major transporter for auxin uptake in root hairs. Local intracellular auxin application triggers Ca2+ signals that propagate as long-distance waves between root cells and modulate their auxin responses. AUX1-mediated IAA transport, as well as IAA- triggered calcium signals, are blocked by treatment with the SCFTIR1/AFB - inhibitor auxinole. Further, they are strongly reduced in the tir1afb2afb3 and the cngc14 mutant. Our study reveals that the AUX1 transporter, the SCFTIR1/AFB receptor and the CNGC14 Ca2+ channel, mediate fast auxin signaling in roots.

145 citations


Journal ArticleDOI
TL;DR: A review will look back over the use of a key inhibitor called naphthylphthalamic acid (NPA) and outline its contribution to the understanding of the molecular mechanisms of polar auxin transport, before proceeding to speculate on how its use is likely still to be informative.
Abstract: Our current understanding of how plants move auxin through their tissues is largely built on the use of polar auxin transporter inhibitors. Although the most important proteins that mediate auxin transport and its regulation have probably all been identified and the mapping of their interactions is well underway, mechanistically we are still surprisingly far away from understanding how auxin is transported. Such an understanding will only emerge after new data are placed in the context of the wealth of physiological data on which they are founded. This review will look back over the use of a key inhibitor called naphthylphthalamic acid (NPA) and outline its contribution to our understanding of the molecular mechanisms of polar auxin transport, before proceeding to speculate on how its use is likely still to be informative.

86 citations


Journal ArticleDOI
TL;DR: It is proposed that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation.
Abstract: Summary Auxin gradients are sustained by series of influx and efflux carriers whose subcellular localization is sensitive to both exogenous and endogenous factors. Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-FORMED (PIN) 6 was reported to be tissue-specific and regulated through unknown mechanisms. Here, we used genetic, molecular and pharmacological approaches to characterize the molecular mechanism(s) controlling the subcellular localization of PIN6. PIN6 localizes to endomembrane domains in tissues with low PIN6 expression levels such as roots, but localizes at the plasma membrane (PM) in tissues with increased PIN6 expression such as the inflorescence stem and nectary glands. We provide evidence that this dual localization is controlled by PIN6 phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 subcellular localization is critical for Arabidopsis inflorescence stem elongation post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence stems elongate faster in pin6 mutant plants than in wild-type plants. We propose that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation.

37 citations


Journal ArticleDOI
TL;DR: It is shown that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen‐activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well‐characterised AGC kinase PINOID, which regulates the polar localisation of PINs and directional auxin transport, thereby underpinning organ growth.

36 citations


Journal ArticleDOI
TL;DR: A comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function is reported, revealing that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls.
Abstract: The Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein) expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.

25 citations



Journal ArticleDOI
TL;DR: It is shown that the folate precursor para-aminobenzoic acid (PABA) is a key modulator of the auxin-ethylene interplay during root gravitropism in Arabidopsis (Arabidopsis thaliana), and that PABA regulates the ethylene-dependent reciprocal compensation between auxin transport and biosynthesis.
Abstract: Plants respond to gravitational force through directional growth along the gravity vector. Although auxin is the central component of the root graviresponse, it works in concert with other plant hormones. Here, we show that the folate precursor para-aminobenzoic acid (PABA) is a key modulator of the auxin-ethylene interplay during root gravitropism in Arabidopsis (Arabidopsis thaliana). In gravistimulated roots, PABA promotes an asymmetric auxin response, which causes the asymmetric growth responsible for root curvature. This activity requires the auxin response transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 as well as ethylene biosynthesis and signaling, indicating that PABA activity requires both auxin and ethylene pathways. Similar to ethylene, exogenous PABA reverses the agravitropic root growth of the auxin transport mutant pin-formed2 (pin2) and the auxin biosynthetic double mutant with loss of function of weak ethylene insensitive (wei) genes, wei8wei2, but not the pin2wei8wei2 triple mutant. This finding suggests that PABA regulates the ethylene-dependent reciprocal compensation between auxin transport and biosynthesis. Furthermore, manipulation of endogenous free PABA levels by modulating the expression of the gene encoding its glucosylation enzyme, UDP-GLYCOSYL TRANSFERASE75B1, impacts the root graviresponse, suggesting that endogenous free PABA levels may play a crucial role in modulating the auxin-ethylene cross talk necessary for root gravitropism.

21 citations


Journal ArticleDOI
TL;DR: Jiang et al. show that MEcPP can reduce the abundance of auxin and an auxin transporter, providing a mechanistic link between plastids and adaptive growth responses.
Abstract: The ancient morphoregulatory hormone auxin dynamically realigns dedicated cellular processes that shape plant growth under prevailing environmental conditions. However, the nature of the stress-responsive signal altering auxin homeostasis remains elusive. Here we establish that the evolutionarily conserved plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) controls adaptive growth by dual transcriptional and post-translational regulatory inputs that modulate auxin levels and distribution patterns in response to stress. We demonstrate that in vivo accumulation or exogenous application of MEcPP alters the expression of two auxin reporters, DR5:GFP and DII-VENUS, and reduces the abundance of the auxin-efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane. However, pharmacological intervention with clathrin-mediated endocytosis blocks the PIN1 reduction. This study provides insight into the interplay between these two indispensable signaling metabolites by establishing the mode of MEcPP action in altering auxin homeostasis, and as such, positioning plastidial function as the primary driver of adaptive growth.

21 citations


Book
27 Jul 2018
TL;DR: This chapter discusses Gravitropism in Higher Plants: Cellular Aspects and Bioregenerative Life Support Systems in Space Research.
Abstract: Chapter 1: Gravity Sensing, Graviorientation and Microgravity -- Chapter 2: Methods for Gravitational Biology Research -- Chapter 3: Gravitaxis in Flagellates and Ciliates -- Chapter 4: Gravitropism in Tip-Growing Rhizoids and Protonemata of Characean Algae -- Chapter 5: Gravitropism in Fungi, Mosses and Ferns -- Chapter 6: Gravitropism in Higher Plants: Cellular Aspects -- Chapter 7: Gravitropism in Higher Plants: Molecular Aspects -- Chapter 8: Bioregenerative Life Support Systems in Space Research.

11 citations


Posted ContentDOI
22 Jun 2018-bioRxiv
TL;DR: Using advanced whole-stack imaging in combination with pattern analysis, a new approach to investigate root zonation under different dark/light conditions is developed and it is shown that the meristematic (proliferation) zone length differs between cell layers.
Abstract: Large-scale methods and robust algorithms are needed for a quantitative analysis of cells status/geometry in situ. It allows the understanding the cellular mechanisms that direct organ growth in response to internal and environmental cues. Using advanced whole-stack imaging in combination with pattern analysis, we have developed a new approach to investigate root zonation under different dark/light conditions. This method is based on the determination of 3 different parameters: cell length, cell volume and cell proliferation on the cell-layer level. This method allowed to build a precise quantitative 3D cell atlas of the Arabidopsis root tip. Using this approach we showed that the meristematic (proliferation) zone length differs between cell layers. Considering only the rapid increase of cortex cell length to determine the meristematic zone overestimates of the proliferation zone for epidermis/cortex and underestimates it for pericycle. The use of cell volume instead of cell length to define the meristematic zone correlates better with cell proliferation zone.

7 citations


Book ChapterDOI
TL;DR: A protocol for the detection and accurate localization of protein interactions based on the combination of a whole-mount proximity ligation assay and iRoCS, a coordinate system able to standardize subtle differences between the architecture of individual Arabidopsis roots is provided.
Abstract: In plants as well as other organisms, protein localization alone is insufficient to provide a mechanistic link between stimulus and process regulation. This is because protein-protein interactions are central to the regulation of biological processes. However, they remain very difficult to detect in situ, with the choice of tools for the detection of protein-protein interaction in situ still in need of expansion. Here, we provide a protocol for the detection and accurate localization of protein interactions based on the combination of a whole-mount proximity ligation assay and iRoCS, a coordinate system able to standardize subtle differences between the architecture of individual Arabidopsis roots.


Book ChapterDOI
01 Jan 2018
TL;DR: It is hoped that understanding the mechanism of these responses will not only allow more efficient cultivation of plants in space, but open paths to greater control over plant stature which will enable us, in the future, better to respond to the challenges of feeding those of us still living on Earth.
Abstract: The pervasive influence of gravity on life on Earth presents barriers to our identifying and understanding of the signaling pathways which have evolved in response to it. Plants are at the same time positively and negatively gravitropic, using the Earth’s gravity to define their stature both above and below ground. Here we review some of the signaling pathways which use the plant hormone auxin to carry information on orientation from regions of perception to regions of growth response. The regulation of these pathways is at once diverse and as yet poorly understood but involves the control of members of a family of polarly localized cellular auxin efflux carriers, the PINs, by factors such as phosphorylation. Auxin transport is also influenced by the availability of calcium ions; this interaction is likely to emerge as a key node in a plant’s responses to gravity. It is hoped that understanding the mechanism of these responses will not only allow more efficient cultivation of plants in space, but open paths to greater control over plant stature which will enable us, in the future, better to respond to the challenges of feeding those of us still living on Earth.

Book ChapterDOI
01 Jan 2018
TL;DR: This work will extend a physical model for the binding of microRNAs to the corresponding target and establish an extended set of features influencing binding probabilities, allowing for statistical analysis of the predicted microRNA–mRNA hypergraph, and characterization of network motives and hierarchies.
Abstract: MicroRNAs, gene encoded small RNA molecules, play an integral part in gene regulation by binding to target mRNAs and preventing their translation. The prediction of microRNA–mRNA-binding sites and the resulting interaction network are essential to understand, and thus influence, regulation of a genetic information flow inside the living organism. Numerous algorithms have been proposed based on various heuristics; however the predictions often vary considerably. In this proposal we will extend a physical model for the binding of microRNAs to the corresponding target and establish an extended set of features influencing binding probabilities. We will be faced with the challenge of (i) too many features and (ii) few known interactions on which to train any prediction algorithm. This problem will be solved using (i) information-theoretical criteria for feature reduction, (ii) regularization, (iii) application of the Infomax approach to guarantee minimal loss of information after dimension reduction, and (iv) experimental validation of theoretical predictions using a novel test system. This strategy will allow (i) statistical analysis of the predicted microRNA–mRNA hypergraph, (ii) characterization of network motives and hierarchies, (iii) identification of missing links, and (iv) removal of false interactions.