scispace - formally typeset
Search or ask a question

Showing papers by "Leo W. Beukeboom published in 2019"


Journal ArticleDOI
TL;DR: It is argued that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied and only through an integrated approach that considers multiple interacting partners and environmental influences will the authors be able to gain a better understanding of host-microbe associations.

61 citations


Journal ArticleDOI
TL;DR: It is reported that circadian expression of four clock genes—period, cryptochrome-2 (cry-2), clock, clock, and cycle—oscillates as a function of photoperiod and latitude of origin in wasps from populations from the extremes of the cline.
Abstract: Day length (photoperiod) and temperature oscillate daily and seasonally and are important cues for season-dependent behavior. Larval diapause of the parasitoid Nasonia vitripennis is maternally induced following a certain number of days (switch point) of a given critical photoperiod (CPP). Both the switch point and the CPP follow a latitudinal cline in European N. vitripennis populations. We previously showed that allelic frequencies of the clock gene period correlate with this diapause induction cline. Here we report that circadian expression of four clock genes-period (per), cryptochrome-2 (cry-2), clock (clk), and cycle (cyc)-oscillates as a function of photoperiod and latitude of origin in wasps from populations from the extremes of the cline. Expression amplitudes are lower in northern wasps, indicating a weaker, more plastic clock. Northern wasps also have a later onset of activity and longer free-running rhythms under constant conditions. RNA interference of per caused speeding up of the circadian clock, changed the expression of other clock genes, and delayed diapause in both southern and northern wasps. These results point toward adaptive latitudinal clock gene expression differences and to a key role of per in the timing of photoperiodic diapause induction of N. vitripennis.

48 citations


Journal ArticleDOI
TL;DR: Capuzzo et al. as mentioned in this paper characterized the gut bacterial profile of two wild olive fruit fly populations introduced in laboratory conditions using next generation sequencing of two regions of the 16S rRNA gene.
Abstract: The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is the major insect pest of olive orchards (Olea europaea L.), causing extensive damages on cultivated olive crops worldwide. Due to its economic importance, it has been the target species for a variety of population control approaches including the sterile insect technique (SIT). However, the inefficiency of the current mass-rearing techniques impedes the successful application of area-wide integrated pest management programs with an SIT component. It has been shown that insect mass rearing and quality of sterile insects can be improved by the manipulation of the insect gut microbiota and probiotic applications. In order to exploit the gut bacteria, it is important to investigate the structure of the gut microbial community. In the current study, we characterized the gut bacterial profile of two wild olive fruit fly populations introduced in laboratory conditions using next generation sequencing of two regions of the 16S rRNA gene. We compared the microbiota profiles regarding the geographic origin of the samples. Additionally, we investigated potential changes in the gut bacteria community before and after the first exposure of the wild adult flies to artificial adult diet with and without antibiotics. Various genera - such as Erwinia, Providencia, Enterobacter, and Klebsiella - were detected for the first time in B. oleae. The most dominant species was Candidatus Erwinia dacicola Capuzzo et al. and it was not affected by the antibiotics in the artificial adult diet used in the first generation of laboratory rearing. Geographic origin affected the overall structure of the gut community of the olive fruit fly, but antibiotic treatment in the first generation did not significantly alter the gut microbiota community.

28 citations


Journal ArticleDOI
TL;DR: In this paper, the authors propose a method to solve the problem of "missing links" and "missing connections" in the context of health care, and propose a solution.XXX.
Abstract: XXX.

20 citations


Journal ArticleDOI
01 Sep 2019-Genetics
TL;DR: The results suggest that, if natural selection maintains polygenic sex determination in house fly via gene expression differences, the phenotypes under selection likely depend on a small number of genetic targets.
Abstract: Sex determination, the developmental process by which organismal sex is established, evolves fast, often due to changes in the master regulators at the top of the pathway. Additionally, in species with polygenic sex determination, multiple different master regulators segregate as polymorphisms. Understanding the forces that maintain polygenic sex determination can be informative of the factors that drive the evolution of sex determination. The house fly, Musca domestica, is a well-suited model to those ends because natural populations harbor male-determining loci on each of the six chromosomes and a biallelic female determiner. To investigate how natural selection maintains polygenic sex determination in the house fly, we assayed the phenotypic effects of proto-Y chromosomes by performing mRNA-sequencing experiments to measure gene expression in house fly males carrying different proto-Y chromosomes. We find that the proto-Y chromosomes have similar effects as a nonsex-determining autosome. In addition, we created sex-reversed males without any proto-Y chromosomes and they had nearly identical gene expression profiles as genotypic males. Therefore, the proto-Y chromosomes have a minor effect on male gene expression, consistent with previously described minimal X-Y sequence differences. Despite these minimal differences, we find evidence for a disproportionate effect of one proto-Y chromosome on male-biased expression, which could be partially responsible for fitness differences between males with different proto-Y chromosome genotypes. Therefore our results suggest that, if natural selection maintains polygenic sex determination in house fly via gene expression differences, the phenotypes under selection likely depend on a small number of genetic targets.

12 citations


Journal ArticleDOI
TL;DR: Investigating life‐history traits of a long‐term laboratory line of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) (‘Whiting polyploid line’) in which polyploids of both sexes are viable and fertile found that diploid males did not differ from haploid males with respect to body size, progeny size, mate competition, or lifespan.
Abstract: In hymenopterans, males are normally haploid (1n) and females diploid (2n), but individuals with divergent ploidy levels are frequently found. In species with 'complementary sex determination' (CSD), increasing numbers of diploid males that are often infertile or unviable arise from inbreeding, presenting a major impediment to biocontrol breeding. Non-CSD species, which are common in some parasitoid wasp taxa, do not produce polyploids through inbreeding. Nevertheless, polyploidy also occurs in non-CSD Hymenoptera. As a first survey on the impacts of inbreeding and polyploidy of non-CSD species, we investigate life-history traits of a long-term laboratory line of the parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) ('Whiting polyploid line') in which polyploids of both sexes (diploid males, triploid females) are viable and fertile. Diploid males produce diploid sperm and virgin triploid females produce haploid and diploid eggs. We found that diploid males did not differ from haploid males with respect to body size, progeny size, mate competition, or lifespan. When diploid males were mated to many females (without accounting for mating order), the females produced a relatively high proportion of male offspring, possibly indicating that these males produce less sperm and/or have reduced sperm functionality. In triploid females, parasitization rate and fecundity were reduced and body size was slightly increased, but there was no effect on lifespan. After one generation of outbreeding, lifespan as well as parasitization rate were increased, and a body size difference was no longer apparent. This suggests that outbreeding has an effect on traits observed in an inbred polyploidy background. Overall, these results indicate some phenotypic detriments of non-CSD polyploids that must be taken into account in breeding.

12 citations


Posted ContentDOI
24 Nov 2019
TL;DR: This work identifies the most promising applications of genetic and genomic methods to improve biological control efficacy by reviewing current methods and providing a framework for using them, incorporating evolutionary and ecological principles.
Abstract: Biological control is widely successful for controlling pests, but effective biocontrol agents are now more difficult to obtain due to more restrictive international trade laws. Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, applying genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them, incorporating evolutionary and ecological principles. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined to better target their selection, followed by how to implement this information into a breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depends on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci (QTL) analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices include marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.

11 citations


Journal ArticleDOI
TL;DR: It is found that the proportion of rhythmic males was higher than females in constant darkness, and that mating decreased rhythmicity of both sexes, in the seven populations from the cline of photoperiodic diapause induction.
Abstract: Many physiological processes of living organisms show circadian rhythms, governed by an endogenous clock. This clock has a genetic basis and is entrained by external cues, such as light and temperature. Other physiological processes exhibit seasonal rhythms, that are also responsive to light and temperature. We previously reported a natural latitudinal cline of photoperiodic diapause induction in the parasitic wasp Nasonia vitripennis in Europe and a correlated haplotype frequency for the circadian clock gene period (per). To evaluate if this correlation is reflected in circadian behaviour, we investigated the circadian locomotor activity of seven populations from the cline. We found that the proportion of rhythmic males was higher than females in constant darkness, and that mating decreased rhythmicity of both sexes. Only for virgin females, the free running period (τ) increased weakly with latitude. Wasps from the most southern locality had an overall shorter free running rhythm and earlier onset, peak, and offset of activity during the 24 h period, than wasps from the northernmost locality. We evaluated this variation in rhythmicity as a function of period haplotype frequencies in the populations and discussed its functional significance in the context of local adaptation.

11 citations


Journal ArticleDOI
TL;DR: A general Anastatus primer set amplifying a 318‐bp fragment within the barcoding region of the cytochrome oxidase I (COI) gene was developed and confirmed of parasitoid presence with dissections and subsequent PCRs with the developed primer pair resulted in 95% success for 1‐h‐old parasitoids eggs.
Abstract: Globally, Anastatus species (Hymenoptera: Eupelmidae) are associated with the invasive agricultural pest Halyomorpha halys (Stal) (Hemiptera: Pentatomidae). In Europe, the polyphagous Anastatus bifasciatus (Geoffroy) is the most prevalent native egg parasitoid on H. halys eggs and is currently being tested as a candidate for augmentative biological control. Anastatus bifasciatus frequently displays behavior without oviposition, and induces additional host mortality through oviposition damage and host feeding that is not measured with offspring emergence. This exacerbates accurate assessment of parasitism and host impact, which is crucial for efficacy evaluation as well as for pre- and post-release risk assessment. To address this, a general Anastatus primer set amplifying a 318-bp fragment within the barcoding region of the cytochrome oxidase I (COI) gene was developed. When challenged with DNA of three Anastatus species -A. bifasciatus, Anastatus japonicus Ashmead, and Anastatus sp.-, five scelionid parasitoid species that might be encountered in the same host environments and 11 pentatomid host species, only Anastatus DNA was successfully amplified. When applied to eggs of the target host, H. halys, and an exemplary non-target host, Dendrolimus pini L. (Lepidoptera: Lasiocampidae), subjected to host feeding, no Anastatus amplicons were produced. Eggs of the two host species containing A. bifasciatus parasitoid stages, from 1-h-old eggs to pupae, and emerged eggs yielded Anastatus fragments. Confirmation of parasitoid presence with dissections and subsequent PCRs with the developed primer pair resulted in 95% success for 1-h-old parasitoid eggs. For both host species, field-exposed sentinel emerged eggs stored dry for 6 months, 100% of the specimens produced Anastatus amplicons. This DNA-based screening method can be used in combination with conventional methods to better interpret host-parasitoid and parasitoid-parasitoid interactions. It will help address ecological questions related to an environmentally friendly approach for the control of H. halys in invaded areas.

11 citations


Posted ContentDOI
14 Nov 2019-bioRxiv
TL;DR: The de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids provide a strong foundation for further functional studies including coevolution with respect to their hosts, the basis of successful infection, and biocontrol.
Abstract: Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biocontrol, and infecting aphids requires overcoming both aphid defenses and their defensive endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp), highly syntenic, and the most AT-rich reported thus far for any arthropod (GC content: 25.8% and 23.8%). This nucleotide bias is accompanied by skewed codon usage, and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and age-specific energy demands. We identify expansions of F-box/Leucine-rich-repeat proteins, suggesting that diversification in this gene family may be associated with their broad host range or with countering defenses from aphids’ endosymbionts. The absence of some immune genes (Toll and Imd pathways) resembles similar losses in their aphid hosts, highlighting the potential impact of symbiosis on both aphids and their parasitoids. Conclusions These findings are of fundamental interest for insect evolution and beyond. This will provide a strong foundation for further functional studies including coevolution with respect to their hosts, the basis of successful infection, and biocontrol. Both genomes are available at https://bipaa.genouest.org.

5 citations


Journal ArticleDOI
TL;DR: A range of contributors that explore the various aspects of the association of insects and their microbes are invited to explore.
Abstract: Microorganisms associated with insects can have substantial impact on diverse life-history traits of their hosts. This opens the opportunity to modify the insects' microbiome to support and improve insect performance, e.g. for insects used in biological control and breeding for food and feed. For this special issue, we have invited a range of contributors that explore the various aspects of the association of insects and their microbes.

Posted ContentDOI
10 Feb 2019-bioRxiv
TL;DR: The results suggest that, if natural selection maintains polygenic sex determination in house fly via gene expression differences, the phenotypes under selection likely depend on a small number of genetic targets.
Abstract: Sex determination, the developmental process by which organismal sex is established, evolves fast, often due to changes in the master regulators at the top of the pathway. Additionally, in species with polygenic sex determination, multiple different master regulators segregate as polymorphisms. Understanding the forces that maintain polygenic sex determination can be informative of the factors that drive the evolution of sex determination. The house fly, Musca domestica, is a well-suited model to those ends because natural populations harbor male-determining loci on each of the six chromosomes and a bi-allelic female-determiner. To investigate how natural selection maintains polygenic sex determination in house fly, we assayed the phenotypic effects of proto-Y chromosomes by performing RNA-seq experiments to measure gene expression in house fly males carrying different proto-Y chromosomes. We find that the proto-Y chromosomes have similar effects as a non-sex-determining autosome. In addition, we created sex-reversed males without any proto-Y chromosomes, and they had nearly identical gene expression profiles as genotypic males. Therefore, the proto-Y chromosomes have a minor effect on male gene expression, consistent with previously described minimal X-Y sequence differences. Despite these minimal differences, we find evidence for a disproportionate effect of one proto-Y chromosome on male-biased expression, which could be partially responsible for fitness differences between males with different proto-Y chromosome genotypes. Our results therefore suggest that, if natural selection maintains polygenic sex determination in house fly via gene expression differences, the phenotypes under selection likely depend on a small number of genetic targets.

Posted ContentDOI
31 Mar 2019-bioRxiv
TL;DR: It is found that the proportion of rhythmic males is higher than females in constant darkness, and that mating decreased rhythmicity of both sexes, and this variation in rhythmicity as a function of period haplotype frequencies in the populations is evaluated.
Abstract: Many physiological processes of living organisms show circadian rhythms, governed by an endogenous clock. This clock has a genetic basis and is entrained by external cues such as light and temperature. Other physiological processes exhibit seasonal rhythms, that are also responsive to light and temperature. We previously reported a natural latitudinal cline of photoperiodic diapause induction in the parasitic wasp Nasonia vitripennis in Europe and a correlated haplotype frequency for the circadian clock gene period (per). To evaluate if this correlation is reflected in circadian behaviour, we investigated circadian locomotor activity of seven populations from the cline. We found that the proportion of rhythmic males is higher than females in constant darkness, and that mating decreased rhythmicity of both sexes. Only for virgin females, the free running period (τ) increased weakly with latitude. Wasps from the most southern locality had an overall shorter free running rhythm and earlier onset, peak and offset of activity during the 24 h period, than wasps from the northernmost locality. We evaluate this variation in rhythmicity as a function of period haplotype frequencies in the populations and discuss its functional significance in the context of local adaptation.

Posted ContentDOI
07 Nov 2019-bioRxiv
TL;DR: The results indicate that these two evolutionary young species have rapidly evolved multiple significant phenotypic differences in their courtship behavior that have a polygenic and highly interactive genetic architecture.
Abstract: Very little is known about the genetic basis of behavioral variation in courtship behavior in Hymenoptera, which can contribute to speciation by prezygotic isolation of closely related species. Here, we analyze the genetic basis and architecture of species differences in the male courtship behavior of two closely related parasitoid wasps Nasonia vitripennis and N. longicornis. Both species occur microsympatrically in parts of their ranges and have been found in the same host pupae. Despite strong postzygotic isolation mechanisms between these two Nasonia species, viable hybrid females can be produced in the laboratory if both species are cured of their Wolbachia endosymbionts. We used haploid F2 hybrid males derived from virgin F1 hybrid females of two independent mapping populations to study the genetic architecture of five quantitative and two qualitative components of their courtship behavior. A total of 14 independent Quantitative Trait Loci (QTL) were found in the first mapping population (320 males), which explained 4-25% of the observed phenotypic variance. Ten of these QTL were confirmed by a second independent mapping population (112 males) and no additional ones were found. A genome-wide scan for two-loci interactions revealed many unique but mostly additive interactions explaining an additional proportion of the observed phenotypic variance. Courtship QTL were found on all five chromosomes and four loci were associated with more than one QTL, indicating either possible pleiotropic effects of individual QTL or individual loci contributing to multiple courtship components. Our results indicate that these two evolutionary young species have rapidly evolved multiple significant phenotypic differences in their courtship behavior that have a polygenic and highly interactive genetic architecture. Based on the location of the QTL and the published Nasonia genome sequence we were able to identify a series of candidate genes for further study.