scispace - formally typeset
Search or ask a question

Showing papers by "Natalia Ivanova published in 2022"


Journal ArticleDOI
Uri Neri, Yuri I. Wolf, Simon Roux, Antonio P. Camargo, Benjamin Lee, Darius Kazlauskas, I-Min A. Chen, Natalia Ivanova, Lisa Zeigler Allen, David Paez-Espino, Donald A. Bryant, Devaki Bhaya, Mart Krupovic, Valerian V. Dolja, Nikos C. Kyrpides, Eugene V. Koonin, Uri Gophna, Adrienne B. Narrowe, Alexander J. Probst, Alexander Sczyrba, Annegret Kohler, Armand Séguin, Ashley Shade, Barbara J. Campbell, Björn D. Lindahl, Brandi Kiel Reese, Breanna M. Roque, Christopher M. DeRito, Colin Averill, Dan Cullen, David A. C. Beck, David A. Walsh, D. R. Ward, Dongying Wu, Emiley A. Eloe-Fadrosh, Eoin L. Brodie, Erica B. Young, Erik A. Lilleskov, Federico J. Castillo, Francis Martin, Gary R. LeCleir, Graeme T. Attwood, Hinsby Cadillo-Quiroz, Holly M. Simon, Ian Hewson, Igor V. Grigoriev, James M. Tiedje, Janet K. Jansson, Janey Lee, Jean S. VanderGheynst, Jeffery L. Dangl, Jeff S. Bowman, Jeffrey Blanchard, Jennifer L. Bowen, Jiangbin Xu, Jillian F. Banfield, Jody W. Deming, Joel E. Kostka, John M. Gladden, Josephine Z. Rapp, Joshua Sharpe, Katherine D. McMahon, Kathleen K. Treseder, Kay D. Bidle, Kelly C. Wrighton, Kimberlee Thamatrakoln, Klaus Nusslein, Laura Meredith, Lucía Ramírez, Marc Buée, Marcel Huntemann, Marina G. Kalyuzhnaya, Mark P. Waldrop, Matthew B. Sullivan, Matthew O. Schrenk, Matthias Hess, Michael A. Vega, Michelle A. O’Malley, Mónica Medina, Naomi E. Gilbert, Nathalie Delherbe, Olivia U. Mason, Paul Dijkstra, Peter F. Chuckran, Petr Baldrian, Philippe Constant, Ramunas Stepanauskas, Rebecca A. Daly, Regina Lamendella, Robert J. Gruninger, Robert M. McKay, Samuel Hylander, Sarah L. Lebeis, Sarah P. Esser, Silvia G. Acinas, Steven Wilhelm, Steven W. Singer, Susannah S. Tringe, Tanja Woyke, T. B. K. Reddy, Terrence H. Bell, Thomas Thomas Mock, Tim A. McAllister, Vera Thiel, Vincent J. Denef, Wen-Tso Liu, Willm Martens-Habbena, Xiaojun Liu, Zachary S. Cooper, Zhong Wang 
01 Sep 2022-Cell
TL;DR: In this article , a phylogenetic analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity.

53 citations


Journal ArticleDOI
24 Jun 2022-Science
TL;DR: Candidatus (Ca.) Thiomargarita magnifica is characterized, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye, and contains compartmentalized genomic material and disrupts conceptions of microbial morphology.
Abstract: Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells. Description A magnificent megabacterium We usually think of bacteria as microscopic isolated cells or colonies. Sampling a mangrove swamp, Volland et al. found an unusually large, sulfur-oxidizing bacterium with a complex membrane organization and predicted life cycle (see the Perspective by Levin). Using a range of microscopy techniques, the authors observed highly polyploid cells with DNA and ribosomes compartmentalized within membranes. Single cells of the bacterium, dubbed Candidatus Thiomargarita magnifica, although thin and tubular, stretched more than a centimeter in length. —MAF Candidatus Thiomargarita magnifica contains compartmentalized genomic material and disrupts conceptions of microbial morphology.

29 citations


Journal ArticleDOI
TL;DR: The Integrated Microbial Genomes & Microbiomes system (IMG/M) v.7 as discussed by the authors provides support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes.
Abstract: The Integrated Microbial Genomes & Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) at the Department of Energy (DOE) Joint Genome Institute (JGI) continues to provide support for users to perform comparative analysis of isolate and single cell genomes, metagenomes, and metatranscriptomes. In addition to datasets produced by the JGI, IMG v.7 also includes datasets imported from public sources such as NCBI Genbank, SRA, and the DOE National Microbiome Data Collaborative (NMDC), or submitted by external users. In the past couple years, we have continued our effort to help the user community by improving the annotation pipeline, upgrading the contents with new reference database versions, and adding new analysis functionalities such as advanced scaffold search, Average Nucleotide Identity (ANI) for high-quality metagenome bins, new cassette search, improved gene neighborhood display, and improvements to metatranscriptome data display and analysis. We also extended the collaboration and integration efforts with other DOE-funded projects such as NMDC and DOE Biology Knowledgebase (KBase).

26 citations


Journal ArticleDOI
TL;DR: IMG/VR as discussed by the authors provides access to the largest collection of viral sequences obtained from (meta)genomes, along with functional annotation and rich metadata, enabling users to efficiently browse and search viruses based on genome features and/or sequence similarity.
Abstract: Viruses are widely recognized as critical members of all microbiomes. Metagenomics enables large-scale exploration of the global virosphere, progressively revealing the extensive genomic diversity of viruses on Earth and highlighting the myriad of ways by which viruses impact biological processes. IMG/VR provides access to the largest collection of viral sequences obtained from (meta)genomes, along with functional annotation and rich metadata. A web interface enables users to efficiently browse and search viruses based on genome features and/or sequence similarity. Here, we present the fourth version of IMG/VR, composed of >15 million virus genomes and genome fragments, a ≈6-fold increase in size compared to the previous version. These clustered into 8.7 million viral operational taxonomic units, including 231 408 with at least one high-quality representative. Viral sequences in IMG/VR are now systematically identified from genomes, metagenomes, and metatranscriptomes using a new detection approach (geNomad), and IMG standard annotation are complemented with genome quality estimation using CheckV, taxonomic classification reflecting the latest taxonomic standards, and microbial host taxonomy prediction. IMG/VR v4 is available at https://img.jgi.doe.gov/vr, and the underlying data are available to download at https://genome.jgi.doe.gov/portal/IMG_VR.

25 citations


Posted ContentDOI
17 Feb 2022-bioRxiv
TL;DR: Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts and should become a major resource for RNA virology.
Abstract: High-throughput RNA sequencing offers unprecedented opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA viral contigs. Via analysis of the 330k novel RNA-dependent RNA polymerases (RdRP), this expansion corresponds to a five-fold increase of RNA virus diversity. Extended RdRP phylogeny supports monophyly of the five established phyla, reveals two putative new bacteriophage phyla and numerous putative novel classes and orders. The dramatically expanded Lenarviricota phylum, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome diversity. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts. Gene content analysis revealed multiple domains previously not found in RNA viruses and implicated in virus-host interactions. This vast collection of new RNA virus genomes provides insights into RNA virus evolution and should become a major resource for RNA virology.

24 citations


Journal ArticleDOI
TL;DR: In this article , a combination of evolutionary genomics, quantitative proteomics, co-expression analyses and cellular physiology was applied to suggest that model polar phytoplankton species have a higher demand for zinc because of elevated cellular levels of zinc-binding proteins.
Abstract: Zinc is an essential trace metal for oceanic primary producers with the highest concentrations in polar oceans. However, its role in the biological functioning and adaptive evolution of polar phytoplankton remains enigmatic. Here, we have applied a combination of evolutionary genomics, quantitative proteomics, co-expression analyses and cellular physiology to suggest that model polar phytoplankton species have a higher demand for zinc because of elevated cellular levels of zinc-binding proteins. We propose that adaptive expansion of regulatory zinc-finger protein families, co-expanded and co-expressed zinc-binding proteins families involved in photosynthesis and growth in these microalgal species and their natural communities were identified to be responsible for the higher zinc demand. The expression of their encoding genes in eukaryotic phytoplankton metatranscriptomes from pole-to-pole was identified to correlate not only with dissolved zinc concentrations in the upper ocean but also with temperature, suggesting that environmental conditions of polar oceans are responsible for an increased demand of zinc. These results suggest that zinc plays an important role in supporting photosynthetic growth in eukaryotic polar phytoplankton and that this has been critical for algal colonization of low-temperature polar oceans.

12 citations


Journal ArticleDOI
TL;DR: In this article , a multiomics approach was applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes, which is essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth.
Abstract: Multiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth.

5 citations


Posted ContentDOI
18 Feb 2022-bioRxiv
TL;DR: It is found that Thiomargarita magnifica grow orders of magnitude over theoretical limits for bacterial cell size through unique biology, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes in daughter cells.
Abstract: Cells of most bacterial species are around 2 µm in length, with some of the largest specimens reaching 750 µm. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Ca. Thiomargarita magnifica, a bacterium with an average cell length greater than 9,000 µm that is visible to the naked eye. We found that these cells grow orders of magnitude over theoretical limits for bacterial cell size through unique biology, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes in daughter cells. These features, along with compartmentalization of genomic material and protein synthesis in membrane-bound organelles, indicate gain of complexity in the Thiomargarita lineage, and challenge traditional concepts of bacterial cells. One Sentence Summary Ca. T. magnifica are compartmentalized centimeter-long bacteria

5 citations


Journal ArticleDOI
TL;DR: The authors presented 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs).
Abstract: The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.

4 citations


Journal ArticleDOI
TL;DR: The genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts are described and provided a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts.
Abstract: Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. favelukesii strains. Rhizobium favelukesii has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with M. sativa but also with the promiscuous host Phaseolus vulgaris. Here we describe the genome of R. favelukesii OR191 and genomic features important for the symbiotic interaction with both of these hosts. The OR191 draft genome contained acid adaptation loci, including the highly acid-inducible lpiA/acvB operon and olsC, required for production of lysine- and ornithine-containing membrane lipids, respectively. The olsC gene was also present in other acid-tolerant Rhizobium strains but absent from the more acid-sensitive Ensifer microsymbionts. The OR191 symbiotic genes were in general more closely related to those found in Medicago microsymbionts. OR191 contained the nodA, nodEF, nodHPQ, and nodL genes for synthesis of polyunsaturated, sulfated and acetylated Nod factors that are important for symbiosis with Medicago, but contained a truncated nodG, which may decrease nodulation efficiency with M. sativa. OR191 contained an E. meliloti type BacA, which has been shown to specifically protect Ensifer microsymbionts from Medicago nodule-specific cysteine-rich peptides. The nitrogen fixation genes nifQWZS were present in OR191 and P. vulgaris microsymbionts but absent from E. meliloti-Medicago microsymbionts. The ability of OR191 to nodulate and fix nitrogen symbiotically with P. vulgaris indicates that this host has less stringent requirements for nodulation than M. sativa but may need rhizobial strains that possess nifQWZS for N2-fixation to occur. OR191 possessed the exo genes required for the biosynthesis of succinoglycan, which is required for the Ensifer-Medicago symbiosis. However, 1H-NMR spectra revealed that, in the conditions tested, OR191 exopolysaccharide did not contain a succinyl substituent but instead contained a 3-hydroxybutyrate moiety, which may affect its symbiotic performance with Medicago hosts. These findings provide a foundation for the genetic basis of nodulation requirements and symbiotic effectiveness with different hosts.

1 citations


Journal ArticleDOI
TL;DR: The draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring, has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron.
Abstract: Here, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation. ABSTRACT Here, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation.