scispace - formally typeset
Search or ask a question

Showing papers by "Paul Coucke published in 2005"


Journal ArticleDOI
TL;DR: These data definitively implicate perturbation of TGFβ signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.
Abstract: We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor β receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles cannot support TGFβ signal propagation, cells derived from individuals heterozygous with respect to these mutations did not show altered kinetics of the acute phase response to administered ligand. Furthermore, tissues derived from affected individuals showed increased expression of both collagen and connective tissue growth factor, as well as nuclear enrichment of phosphorylated Smad2, indicative of increased TGFβ signaling. These data definitively implicate perturbation of TGFβ signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.

1,564 citations


Journal ArticleDOI
TL;DR: It is shown that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary ciliaof renal epithelial cells in the pathogenesis of SLSN.
Abstract: Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children(1-3). Identification of four genes mutated in NPHP subtypes 1- 4 (refs. 4- 9) has linked the pathogenesis of NPHP to ciliary functions(9). Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.

377 citations


Journal ArticleDOI
TL;DR: Variability in severity of the phenotype was observed, but no significant genotype–phenotype correlations emerged, suggesting that other genes are involved in classic EDS.
Abstract: Classic Ehlers-Danlos syndrome (EDS) is characterized by fragile and hyperextensible skin, atrophic scarring, and joint hypermobility. Mutations in the COL5A1 and the COL5A2 gene encoding the alpha1(V) and the alpha2(V) chains, respectively, of type V collagen have been shown to cause the disorder, but it is unknown what proportion of classic EDS patients carries a mutation in these genes. We studied fibroblast cultures from 48 patients with classic EDS by SDS-PAGE for the presence of type V collagen defects. An abnormal collagen pattern was detected in only 2 out of 48 cell lines, making this a poor method for routine diagnostic evaluation. A total of 42 out of 48 (88%) patients were heterozygous for an expressed polymorphic variant in COL5A1. cDNA from 18 (43%) of them expressed only one COL5A1 allele. In 37 patients, the COL5A1/A2 genes were then analyzed by SSCP and conformation sensitive gel electrophoresis (CSGE). A total of 26 patients that were mutation-negative after SSCP/CSGE screening were reanalyzed by dHPLC. In addition, 11 other patients were analyzed by dHPLC only. In total, 17 mutations leading to a premature stop codon and five structural mutations were identified in the COL5A1 and the COL5A2 genes. In three patients with a positive COL5A1 null-allele test, no causal mutation was found. Overall, in 25 out of 48 patients (52%) with classic EDS, an abnormality in type V collagen was confirmed. Variability in severity of the phenotype was observed, but no significant genotype-phenotype correlations emerged. The relatively low mutation detection rate suggests that other genes are involved in classic EDS. We excluded the COL1A1, COL1A2, and DCN gene as major candidate genes for classic EDS, since no causal mutation in these genes was found in a number of patients who tested negative for COL5A1 and COL5A2.

115 citations


Journal ArticleDOI
TL;DR: Biochemical analysis of collagens extracted from skin fibroblasts is a powerful tool to detect the subset of patients with complete absence of proα2(I) collagen chains, and in these patients, careful cardiac follow up with ultrasonography is highly recommended because of the risk for cardiac valvular problems in adulthood.
Abstract: Background: Heterozygous mutations in the COL1A1 or COL1A2 gene encoding the α1 and α2 chain of type I collagen generally cause either osteogenesis imperfecta or the arthrochalasis form of Ehlers-Danlos syndrome (EDS). Homozygous or compound heterozygous COL1A2 mutations resulting in complete deficiency of the proα2(I) collagen chains are extremely rare and have been reported in only a few patients, albeit with variable phenotypic outcome. Methods: The clinical features of the proband, a 6 year old boy, were recorded. Analysis of proα and α-collagen chains was performed by SDS-polyacrylamide gel electrophoresis using the Laemmli buffer system. Single stranded conformation polymorphism analysis of the proband’s DNA was also carried out. Results: In this report we show that complete lack of proα2(I) collagen chains can present as a phenotype reminiscent of mild hypermobility EDS during childhood. Conclusions: Biochemical analysis of collagens extracted from skin fibroblasts is a powerful tool to detect the subset of patients with complete absence of proα2(I) collagen chains, and in these patients, careful cardiac follow up with ultrasonography is highly recommended because of the risk for cardiac valvular problems in adulthood.

107 citations


Journal ArticleDOI
TL;DR: Five patients from consanguineous marriages with a cutis laxa syndrome with skeletal and joint involvement, developmental delay and neurological findings are described, suggesting that a combined defect of glycosylation might be a causative factor in congenital cuti laxa.
Abstract: Congenital cutis laxa is a genetically heterogeneous condition presenting with loose and redundant skin folds, decreased elasticity of the skin, connective tissue involvement and a highly variable spectrum of associated features. The most common forms are inherited in an autosomal recessive or dominant fashion. Fibulin 5 and elastin mutations were detected in a limited number of patients, but in most cases the etiology is not known. Based on a previous observation of an abnormal transferrin isoelectric focusing pattern in a patient with cutis laxa indicating an N-glycosylation defect, we performed a screening for disorders of protein glycosylation in unrelated children with cutis laxa syndrome, including a recently developed test for defective O-glycosylation. Here, we describe five patients from consanguineous marriages with a cutis laxa syndrome with skeletal and joint involvement, developmental delay and neurological findings. Three of these five children have an inborn error of glycan biosynthesis affecting the synthesis of both N- and O-linked glycans. Two patients had normal glycosylation patterns. All known causes of secondary glycosylation disorders were excluded in the children. No mutations were found in the FBLN5 gene. In conclusion, we have identified a new combined glycosylation defect with a distinct clinical phenotype. Our results suggest that a combined defect of glycosylation might be a causative factor in congenital cutis laxa. This is the first report where abnormal N- and O-linked glycosylation is implicated in the etiology of cutis laxa syndrome.

85 citations


Journal ArticleDOI
TL;DR: Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies.
Abstract: Background: The majority of COL2A1 missense mutations are substitutions of obligatory glycine residues in the triple helical domain. Only a few non-glycine missense mutations have been reported and among these, the arginine to cysteine substitutions predominate. Objective: To investigate in more detail the phenotype resulting from arginine to cysteine mutations in the COL2A1 gene. Methods: The clinical and radiographic phenotype of all patients in whom an arginine to cysteine mutation in the COL2A1 gene was identified in our laboratory, was studied and correlated with the abnormal genotype. The COL2A1 genotyping involved DHPLC analysis with subsequent sequencing of the abnormal fragments. Results: Six different mutations (R75C, R365C, R519C, R704C, R789C, R1076C) were found in 11 unrelated probands. Each mutation resulted in a rather constant and site-specific phenotype, but a perinatally lethal disorder was never observed. Spondyloarthropathy with normal stature and no ocular involvement were features of patients with the R75C, R519C, or R1076C mutation. Short third and/or fourth toes was a distinguishing feature of the R75C mutation and brachydactyly with enlarged finger joints a key feature of the R1076C substitution. Stickler dysplasia with brachydactyly was observed in patients with the R704C mutation. The R365C and R789C mutations resulted in classic Stickler dysplasia and spondyloepiphyseal dysplasia congenita (SEDC), respectively. Conclusions: Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies.

79 citations


Journal ArticleDOI
TL;DR: The conclusions in this study were that the clinical phenotype of autosomal recessive cutis laxa seen in three patients is not caused by mutations in the FBLN5 gene, and evidence is presented that extracellular matrix (ECM) proteins of skin are likely to be highly glycosylated with N- and/or mucin type O-glycans by using algorithms for predicting Glycosylation.

38 citations


Journal ArticleDOI
TL;DR: Mutation analysis in 66 IO men revealed a range of sequence variants, of which two missense variants were shown to be of functional relevance, and the LRP5 gene contributes to the clinical phenotype of IO in men.
Abstract: We studied whether the LRP5 gene contributes to the clinical phenotype of IO in men. Mutation analysis in 66 IO men revealed a range of sequence variants, of which two missense variants were shown to be of functional relevance. Introduction: Mutations in the LDL receptor-related protein 5 (LRP5) gene have been associated with extreme bone phenotypes, which makes LRP5 a plausible candidate gene for idiopathic osteoporosis (IO). Materials and Methods: In 66 men with IO, all 23 exons and exon-intron boundaries of the LRP5 gene were screened for mutations, and functional analyses were performed for those that were putatively involved in the phenotype. Results: Mutation analysis in the IO probands revealed five missense mutations, of which 1067C>T (S356L), 1364C>T (S455L), and 4609G>A (A1537T) were of potential functional significance because they were located in highly conserved regions of LRP5 and not found in a control panel. Segregation analysis in the respective families could not exclude their possible causality for IO. Furthermore, functional analyses clearly showed an inhibitory effect of mutations 1067C>T and 1364C>T on Wnt signal transduction. These effects are most likely caused by impaired LRP5 synthesis in the case of 1067C>T and failure of protein trafficking to the cell surface for 1364C>T. Conclusions: For 2 of 66 IO probands, a mutation in the LRP5 gene with proven functionality was found. The findings indicate that carrying an LRP5 mutation is a risk factor for IO, but that overall, IO in men is infrequently underlied by such a mutation.

30 citations