scispace - formally typeset
Search or ask a question

Showing papers by "Pierre Royer published in 2017"


Journal ArticleDOI
TL;DR: Using radiative transfer modeling, it is found that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common.
Abstract: Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable eta Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the great eruption. We present the 2.4-670 mu m spectral energy distribution, constructed from legacy Infrared Space Observatory observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions that are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 mu m feature. Our preferred model contains nitrides AlN and Si3N4 in low abundances. Dust masses range from 0.25 to 0.44 M-circle dot, but M-tot. 45M(circle dot) in both cases, due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5 '' x 7 '' central region. An additional compact feature is detected at 390 mu m. We obtain L-IR = 2.96 x 10(6) L-circle dot, a 25% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25%-40% of optical and UV radiation to escape from the central source. We also present an analysis of (CO)-C-12 and (CO)-C-13 J = 5-4 through 9-8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [C-12 II] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.

44 citations


Journal ArticleDOI
TL;DR: The ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) as discussed by the authors is a large-scale observational survey to characterize the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight.
Abstract: The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the [Formula: see text] fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70 000 - 100 000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305-1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used radiative transfer modeling to obtain spectral energy distributions of the massive Homunculus Nebula around the luminous blue variable Carinae, and found that the two best-fit dust models yield compositions consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common.
Abstract: Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable $\eta$ Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the Great Eruption. We present the 2.4 - 670 $\mu$m spectral energy distribution, constructed from legacy ISO observations and new spectroscopy obtained with the {\em{Herschel Space Observatory}}. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 $\mu$m feature. Our preferred model contains nitrides AlN and Si$_3$N$_4$ in low abundances. Dust masses range from 0.25 to 0.44 $M_\odot$ but $M_{\rm{tot}} \ge$ 45 $M_\odot$ in both cases due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5$"$ $\times$ 7$"$ central region. An additional compact feature is detected at 390 $\mu$m. We obtain $L_{\rm{IR}}$ = 2.96 $\times$ 10$^6$ $L_\odot$, a 25\% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25-40\% of optical and UV radiation to escape from the central source. We also present an analysis of $^{12}$CO and $^{13}$CO $J = 5-4$ through $9-8$ lines, showing that the abundances are consistent with expectations for CNO-processed material. The [$^{12}$C~{\sc{ii}}] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.

36 citations


Journal ArticleDOI
TL;DR: The ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) as mentioned in this paper was designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral-type stars whose lines-of-sight probe the diffuse-to-translucent ISM.
Abstract: The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the C60+ fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers. In an effort to systematically study the properties of the DIB carriers, we have initiated a new large-scale observational survey: the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES). The main objective is to build on and extend existing DIB surveys to make a major step forward in characterising the physical and chemical conditions for a statistically significant sample of interstellar lines-of-sight, with the goal to reverse-engineer key molecular properties of the DIB carriers. EDIBLES is a filler Large Programme using the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope at Paranal, Chile. It is designed to provide an observationally unbiased view of the presence and behaviour of the DIBs towards early-spectral-type stars whose lines-of-sight probe the diffuse-to-translucent ISM. Such a complete dataset will provide a deep census of the atomic and molecular content, physical conditions, chemical abundances and elemental depletion levels for each sightline. Achieving these goals requires a homogeneous set of high-quality data in terms of resolution (R ~ 70000 -- 100000), sensitivity (S/N up to 1000 per resolution element), and spectral coverage (305--1042 nm), as well as a large sample size (100+ sightlines). In this first paper the goals, objectives and methodology of the EDIBLES programme are described and an initial assessment of the data is provided.

10 citations


Journal ArticleDOI
TL;DR: BRASS is an international networking project of the Federal Government of Belgium for the development of a new public database providing accurate fundamental atomic data of vital importance for ste... as mentioned in this paper, and
Abstract: BRASS is an international networking project of the Federal Government of Belgium for the development of a new public database providing accurate fundamental atomic data of vital importance for ste...

8 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed infrared Spitzer IRS and far-infrared Herschel /PACS observations of the NGC 6164/5 nebula and derived the abundances in the ejected material.
Abstract: Aims. The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Stromgren sphere. The exact formation process of this nebula and its precise relation to the star’s evolution remain unknown.Methods. We analyzed infrared Spitzer IRS and far-infrared Herschel /PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code.Results. The Hα image displays a bipolar or “8”-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured ~1.2–1.3 and ~0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger.

4 citations


Journal ArticleDOI
TL;DR: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to critically evaluate atomic data, from publicly available repositories, by comparing state-of-the-art synthetic algorithms.
Abstract: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to critically evaluate atomic data, from publicly available repositories, by comparing state-of-the-art synthetic ...

4 citations


Journal ArticleDOI
TL;DR: In this paper, the radial velocity measurements performed for the Southern targets in the 12 - 17 R magnitude range on high-to mid-resolution spectra obtained with the GIRAFFE and UVES spectrographs are presented.
Abstract: Gaia is a space mission currently measuring the five astrometric parameters as well as spectrophotometry of at least 1 billion stars to G = 20.7 mag with unprecedented precision. The sixth parameter in phase space (radial velocity) is also measured thanks to medium-resolution spectroscopy being obtained for the 150 million brightest stars. During the commissioning phase, two fields, one around each ecliptic pole, have been repeatedly observed to assess and to improve the overall satellite performances as well as the associated reduction and analysis software. A ground-based photometric and spectroscopic survey was therefore initiated in 2007, and is still running in order to gather as much information as possible about the stars in these fields. This work is of particular interest to the validation of the Radial Velocity Spectrometer (RVS) outputs. The paper presents the radial velocity measurements performed for the Southern targets in the 12 - 17 R magnitude range on high- to mid-resolution spectra obtained with the GIRAFFE and UVES spectrographs.

3 citations


Journal ArticleDOI
TL;DR: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage as mentioned in this paper.
Abstract: Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. We report the cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that ~2% of our line list and Vienna Atomic Line Database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transitions are available to download at brass.sdf.org.

2 citations