scispace - formally typeset
Search or ask a question

Showing papers by "Robin Antrobus published in 2019"


Journal ArticleDOI
TL;DR: The finding that melanoma TEV downregulated type I interferon receptor and expression of IFN-inducible cholesterol 25-hydroxylase (CH25H) suggests the importance of CH25H in defense against education of normal cells by TEV and argues for the use of reserpine in adjuvant melanoma therapy.

109 citations


Journal ArticleDOI
24 Dec 2019-eLife
TL;DR: A mass spectrometry-based interactome analysis identified a network of >3400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes and suggested its importance in viral replication.
Abstract: Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3,400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.

74 citations


Journal ArticleDOI
TL;DR: Protein C6, a multifunctional IFN antagonist, is identified as being necessary and sufficient for proteasomal degradation of HDAC5, which is both a host antiviral factor and a viral mechanism of innate immune evasion.

39 citations


Journal ArticleDOI
29 Mar 2019-eLife
TL;DR: It is reported here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells and identified at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell- cell adhesion regulators.
Abstract: Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.

29 citations


Journal ArticleDOI
TL;DR: Quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection, demonstrating the importance of cell cycle progression and pseudo-G2 arrest in effective BK PyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle.
Abstract: BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.

21 citations


Journal ArticleDOI
20 Sep 2019
TL;DR: A RBC surface proteome is defined and potential Plasmodium receptors are identified based on either diminished protein abundance, or increased variation in RBCs from West African individuals.
Abstract: Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use 'plasma membrane profiling' and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals.

18 citations


Posted ContentDOI
07 Apr 2019-bioRxiv
TL;DR: In this article, quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cell throughout 72 hours of BKPyV infection.
Abstract: BK polyomavirus (BKPyV) is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2 kilobase pair dsDNA genome expresses just seven known proteins, thus it relies heavily on host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host:virus interplay. Here for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cell throughout 72 hours of BKPyV infection. These data demonstrate the importance both of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.

17 citations


Posted ContentDOI
09 Apr 2019-bioRxiv
TL;DR: The complete viral transcriptome and translatome during lytic infection is unraveled with base-pair resolution by computational integration of multi-omics data and shows that key viral regulators and structural proteins possess NTEs, which initiate from non-canonical start codons and govern subcellular protein localization and packaging.
Abstract: Summary Since the genome of herpes simplex virus 1 (HSV-1) was first sequenced more than 30 years ago, its predicted 80 genes have been intensively studied. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identified a total of 201 viral transcripts and 284 open reading frames (ORFs) including all known and 46 novel large ORFs. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of novel viral ORFs as well as N-terminal extensions (NTEs) and truncations thereof. We show that key viral regulators and structural proteins possess NTEs, which initiate from non-canonical start codons and govern subcellular protein localization and packaging. We validated a novel non-canonical large spliced ORF in the ICP0 locus and identified a 93 aa ORF overlapping ICP34.5 that is thus also deleted in the FDA-approved oncolytic virus Imlygic. Finally, we extend the current nomenclature to include all novel viral gene products. Taken together, this work provides a valuable resource for future functional studies, vaccine design and oncolytic therapies.

14 citations


Journal ArticleDOI
TL;DR: This study highlights an important role for CH CHD4 in regulating tumour cell metabolism and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.
Abstract: Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus, mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4) is critical for regulating intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers correlates with increased tumour progression and poor patient survival. Here, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I–V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS). Our study highlights an important role for CHCHD4 in regulating tumour cell metabolism and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.

12 citations


Journal ArticleDOI
19 Sep 2019
TL;DR: Chemical ubiquitylation of NEMO using a ligation auxiliary, which only requires a two-step synthesis, and is easily installed onto the lysine side-chain, and it is shown that ubiquitylated NemO has similar affinity to linear di-ubiquitin chains as unmodified N EMO.
Abstract: The ubiquitylation of NF-κB essential modulator (NEMO) is part of the intracellular immune signalling pathway. Monoubiquitylated NEMO is required for exploring the mechanism of NEMO linear ubiquitylation by LUBAC (linear ubiquitin chain assembly complex), but is not accessible by biological techniques. Here we perform the chemical ubiquitylation of NEMO using a ligation auxiliary, which only requires a two-step synthesis, and is easily installed onto the lysine side-chain. Chemical ligation occurs directly on the lysine e amine and remains efficient below pH 7. We show that ubiquitylated NEMO has similar affinity to linear diubiquitin chains as unmodified NEMO. The proximal ubiquitin of chemically synthesised NEMOCoZi-Ub is accepted as a substrate for linear extension by the (RING-Between-RING) RBR domain of HOIL-1-interacting protein (HOIP) alone. Our results indicate that NEMO linear ubiquitylation consists of two-steps, an initial priming event and a separate extension step requiring different LUBAC components.

6 citations


Posted ContentDOI
08 Aug 2019-bioRxiv
TL;DR: This study highlights an unanticipated and efficient mechanism whereby a single virus protein targets a cellular trafficking factor to modify the abundance of multiple signaling molecules at the surface of infected cells.
Abstract: Summary Herpesviruses are ubiquitous in the human population and they extensively remodel the cellular environment during infection. Multiplexed quantitative proteomic analysis over a whole time-course of herpes simplex virus (HSV)-1 infection was used to characterize changes in the host-cell proteome and to probe the kinetics of viral protein production. Several host-cell proteins were targeted for rapid degradation by HSV-1, including the cellular trafficking factor GOPC. We identify that the poorly-characterized HSV-1 protein pUL56 binds directly to GOPC, stimulating its ubiquitination and proteasomal degradation. Plasma membrane profiling revealed that pUL56 mediates specific changes to the surface proteome of infected cells, including loss of IL18 receptor and Toll-like receptor 2, and delivery of Toll-like receptor 2 to the cell-surface requires GOPC. Our study highlights an unanticipated and efficient mechanism whereby a single virus protein targets a cellular trafficking factor to modify the abundance of multiple signaling molecules at the surface of infected cells.


Posted ContentDOI
07 Jan 2019-bioRxiv
TL;DR: This study highlights an important role for CH CHD4 in regulating tumour cell metabolism, and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.
Abstract: BACKGROUND Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil helix coiled-coil helix domain-containing protein 4 (CHCHD4) is critical for maintaining intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers, correlates with increased tumour progression and poor patient survival. RESULTS Here, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I-V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS). CONCLUSIONS Our study highlights an important role for CHCHD4 in regulating tumour cell metabolism, and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.

Posted ContentDOI
18 Oct 2019-bioRxiv
TL;DR: It is demonstrated that formation of this complex is conserved across distantly-related human herpesviruses, as is the association of these homologues with cellular membranes that are used for virion assembly.
Abstract: Herpesviruses are an ancient family of highly-prevalent human and animal pathogens that acquire their membrane envelopes in the cytoplasm of infected cells. While multiple conserved viral proteins are known to be required for efficient herpesvirus production, many of these proteins lack identifiable structural homologues and the molecular details of herpesvirus assembly remain unclear. We have characterized the complex of assembly proteins pUL7 and pUL51 from herpes simplex virus (HSV)-1, an α-herpesvirus, using multi-angle light scattering and small-angle X-ray scattering with chemical crosslinking. HSV-1 pUL7 and pUL51 form a stable 1:2 complex that is capable of higher-order oligomerization in solution. We solved the crystal structure of this complex, revealing a core heterodimer comprising pUL7 bound to residues 41–125 of pUL51. While pUL7 adopts a previously-unseen compact fold, the extended helix-turn-helix conformation of pUL51 resembles the cellular endosomal complex required for transport (ESCRT)-III component CHMP4B, suggesting a direct role for pUL51 in promoting membrane scission during virus assembly. We demonstrate that the interaction between pUL7 and pUL51 homologues is conserved across human α-, β- and γ-herpesviruses, as is their association with trans-Golgi membranes in cultured cells. However, pUL7 and pUL51 homologues do not form complexes with their respective partners from different virus families, suggesting that the molecular details of the interaction interface have diverged. Our results demonstrate that the pUL7:pUL51 complex is conserved across the herpesviruses and provide a structural framework for understanding its role in herpesvirus assembly. Significance Statement Herpesviruses are extremely common human pathogens that cause diseases ranging from cold sores to cancer. Herpesvirus acquire their membrane envelope in the cytoplasm via a conserved pathway, the molecular details of which remain unclear. We have solved the structure of a complex between herpes simplex virus (HSV)-1 proteins pUL7 and pUL51, two proteins that are required for efficient HSV-1 assembly. We show that formation of this complex is conserved across distantly-related human herpesviruses, as is the association of these homologues with cellular membranes that are used for virion assembly. While pUL7 adopts a previously-unseen fold, pUL51 resembles key cellular membrane-remodeling complex components, suggesting that the pUL7:pUL51 complex may play a direct role in deforming membranes to promote virion assembly.