scispace - formally typeset
Search or ask a question

Showing papers by "Samuel I. Stupp published in 2021"


Journal ArticleDOI
12 Nov 2021-Science
TL;DR: In this article, the authors describe peptide amphiphile supramolecular polymers that mimic proteins for regeneration of tissues, which is known to be effective in the regeneration of tissue.
Abstract: The signaling of cells by scaffolds of synthetic molecules that mimic proteins is known to be effective in the regeneration of tissues. Here, we describe peptide amphiphile supramolecular polymers ...

100 citations


Journal ArticleDOI
01 Feb 2021-Small
TL;DR: Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks.
Abstract: Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.

45 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst.
Abstract: Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.

43 citations


Journal ArticleDOI
07 Apr 2021
TL;DR: The molecular design of photoactive bilayer actuators that can rapidly respond to visible light, leading to complex but predictable bio-inspired shape changes that mimic living organisms are reported on.
Abstract: Summary Development of stimuli-responsive soft matter that undergoes fast and reversible shape changes that mimic living organisms is a grand challenge for materials science. We report here on the molecular design of photoactive bilayer actuators that can rapidly respond to visible light, leading to complex but predictable bio-inspired shape changes. The mechanism of accelerated actuation is rooted in the simultaneous photoexpansion of one layer and photocontraction of the other triggered by the same light stimulus. The opposing response leads to a synergistic effect that results in fast bending actuation. The synergistic bilayers were bridged with light-inactive segments to generate macroscopic constructs capable of undergoing programmable 3D origami-like shape change upon irradiation. By controlling the anisotropic friction with the substrate, these constructs displayed unidirectional inchworm- and octopus-like locomotion over macroscopic distances. The soft matter systems investigated here demonstrate the possibility of molecularly engineering photoactuators that mimic functions we associate with living organisms.

33 citations


Journal ArticleDOI
TL;DR: In this paper, an approach for further increasing and tuning the porosity of synthetic allomelanin analogues was described, and the well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods.
Abstract: Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.

33 citations


Journal ArticleDOI
TL;DR: In this article, a donor-acceptor complex is formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10, in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1.5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light even at low concentrations in solution.
Abstract: Colored charge-transfer complexes can be formed by the association between electron-rich donor and electron-deficient acceptor molecules, bringing about the narrowing of HOMO-LUMO energy gaps so that they become capable of harnessing visible light. In an effort to facilitate the use of these widespread, but nonetheless weak, interactions for visible light photocatalysis, it is important to render the interactions strong and robust. Herein, we employ a well-known donor-acceptor [2]catenane-formed by the mechanical interlocking of cyclobis(paraquat-p-phenylene) and 1,5-dinaphtho[38]crown-10-in which the charge-transfer interactions between two 4,4'-bipyridinium and two 1,5-dioxynaphthalene units are enhanced by mechanical bonding, leading to increased absorption of visible light, even at low concentrations in solution. As a result, since this [2]catenane can generate persistent bipyridinium radical cations under continuous visible-light irradiation without the need for additional photosensitizers, it can display good catalytic activity in both photo-reductions and -oxidations, as demonstrated by hydrogen production-in the presence of platinum nanoparticles-and aerobic oxidation of organic sulfides, such as l-methionine, respectively. This research, which highlights the usefulness of nanoconfinement present in mechanically interlocked molecules for the reinforcement of weak interactions, can not only expand the potential of charge-transfer interactions in solar energy conversion and synthetic photocatalysis but also open up new possibilities for the development of active artificial molecular shuttles, switches, and machines.

32 citations


Journal ArticleDOI
TL;DR: In this article, it is shown how to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers.
Abstract: For the most part, enzymes contain one active site wherein they catalyze in a serial manner chemical reactions between substrates both efficiently and rapidly. Imagine if a situation could be created within a chiral porous crystal containing trillions of active sites where substrates can reside in vast numbers before being converted in parallel into products. Here, we report how it is possible to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers. One of the high-yielding regioisomers exhibits optical activity as a result of the presence of an 8:1 ratio of the two enantiomers following separation by high-performance liquid chromatography. The solid-state superstructure of 1-anthracenecarboxylate potassium salt (1-ACK), which is co-crystallized with γ-cyclodextrin, reveals that pairs of substrate molecules are not only packed inside tunnels between spherical cavities present in CD-MOF-1, but also stabilized-in addition to hydrogen-bonding to the C-2 and C-3 hydroxyl groups on the d-glucopyranosyl residues present in the γ-cyclodextrin tori-by combinations of hydrophobic and electrostatic interactions between the carboxyl groups in 1-AC- and four K+ cations on the waistline between the two γ-cyclodextrin tori in the tunnels. These non-covalent bonding interactions result in preferred co-conformations that account for the highly regio- and enantioselective [4+4] cycloaddition during photoirradiation. Theoretical calculations, in conjunction with crystallography, support the regio- and stereochemical outcome of the photodimerization.

27 citations


Journal ArticleDOI
TL;DR: In this paper, a supramolecular system is reported upon where exchange dynamics and host-guest interactions between β-cyclodextrin and adamantane on peptide amphiphiles lead to superstructure formation.
Abstract: Dynamic and reversible assembly of molecules is ubiquitous in the hierarchical superstructures of living systems and plays a key role in cellular functions. Recent work from the laboratory reported on the reversible formation of such superstructures in systems of peptide amphiphiles conjugated to oligonucleotides and electrostatically complimentary peptide sequences. Here, a supramolecular system is reported upon where exchange dynamics and host-guest interactions between β-cyclodextrin and adamantane on peptide amphiphiles lead to superstructure formation. Superstructure formation with bundled nanoribbons generates a mechanically robust hydrogel with a highly porous architecture that can be 3D printed. Functionalization of the porous superstructured material with a biological signal results in a matrix with significant in vitro bioactivity toward neurons that could be used as a supramolecular model to design novel biomaterials.

20 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated peptide amphiphiles containing β-sheet forming domains that form twisted nanoribbons in water and found that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal β-sheets.
Abstract: The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing β-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted β-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal β-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.

17 citations


Journal ArticleDOI
TL;DR: In this paper, morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion were investigated.
Abstract: The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 μm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.

13 citations


Journal ArticleDOI
TL;DR: Supramolecular polymers can emulate some of the physical properties of covalent polymers but offer new opportunities given the possibility of designing monomers that will form highly ordered assembels as discussed by the authors.
Abstract: Supramolecular polymers can emulate some of the physical properties of covalent polymers but offer new opportunities given the possibility of designing monomers that will form highly ordered assemb...

Journal ArticleDOI
TL;DR: In this article, a supramolecular system comprised of negatively charged peptide amphiphile (PA) molecules, in which only a tiny fraction of the molecules (0.7 mol%) were covalently conjugated to one of two different fluorophores, half to fluorescein isothiocyanate (FTIC) and the other half to tetramethylrhodamine (TAMRA), was analyzed.
Abstract: Supramolecular self-assembly enables living organisms to form highly functional hierarchical structures with individual components self-organized across multiple length scales. This has inspired work on multicomponent supramolecular materials to understand factors behind co-assembly versus self-sorting of molecules. We report here on a supramolecular system comprised of negatively charged peptide amphiphile (PA) molecules, in which only a tiny fraction of the molecules (0.7 mol%) were covalently conjugated to one of two different fluorophores, half to fluorescein isothiocyanate (FTIC) and the other half to tetramethylrhodamine (TAMRA). Confocal microscopy of the system revealed self-sorting of the two different fluorescent PA molecules, where TAMRA PA is concentrated in micron-scale domains while FITC PA remains dispersed throughout the sample. From Forster resonance energy transfer and fluorescence recovery experiments, we conclude that conjugation of the negatively charged FITC to PA significantly disrupts its co-assembly with the 99.3 mol% of unlabeled molecules, which are responsible for formation of micron-scale domains. Conversely, conjugation of the zwitterionic TAMRA causes no such disruption. Interestingly, this dissimilar behavior between FITC and TAMRA PA causes them to self-sort at large length scales in the supramolecular system, mediated not by specific interactions among the individual fluorophores but instead by their different propensities to co-assemble with the majority component. We also found that greater ionic strength in the aqueous environment of the system promotes mixing by lowering the electrostatic barriers involved in self-sorting. Our results demonstrate great thermodynamic subtlety in the driving forces that mediate self-sorting versus co-assembly in supramolecular peptide assemblies.

Journal ArticleDOI
TL;DR: Observations suggest that this bioengineered construct successfully acts as a chemo- attractant for circulating MSCs due to controlled release of VEGF from the PA gels.
Abstract: BACKGROUND Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.

Journal ArticleDOI
TL;DR: It is shown that the surface of silica nanoparticles allows the clustering of RGDS bioactive signals leading to improved adhesion and spreading of fibroblast cells on composite hydrogels at an epitope concentration much lower than in PA-only based matrices.

Journal ArticleDOI
TL;DR: Bulk gels with many internal interfaces between the covalent and supramolecular polymer components formed by the rapid chaotic mixing of solutions, one containing negatively charged PA nanofibers and the other the positively charged biopolymer chitosan are reported here.
Abstract: Hierarchical self-assembly leading to organized supramolecular structures across multiple length scales has been of great recent interest. Earlier work from our laboratory reported the complexation of peptide amphiphile (PA) supramolecular polymers with oppositely charged polyelectrolytes into a single solid membrane at a macroscopic interface. We report here the formation of bulk gels with many internal interfaces between the covalent and supramolecular polymer components formed by the rapid chaotic mixing of solutions, one containing negatively charged PA nanofibers and the other the positively charged biopolymer chitosan. We found that formation of a contact layer at the interface of the solutions locks the formation of hydrogels with lamellar microstructure. The nanofiber morphology of the supramolecular polymer is essential to this process since gels do not form when solutions of supramolecular assemblies form spherical micelles. We found that rheological properties of the gels can be tuned by changing the relative amounts of each component. Furthermore, both positively and negatively charged proteins are easily encapsulated within the contact layer of the gel, which provides an interesting biomedical function for these systems.

Journal ArticleDOI
TL;DR: In this article, a peptide amphiphile (PA) nanofiber was used to target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) in the lung with pulmonary hypertension.
Abstract: Pulmonary hypertension is a highly morbid disease with no cure. Available treatments are limited by systemic adverse effects due to non-specific biodistribution. Self-assembled peptide amphiphile (PA) nanofibers are biocompatible nanomaterials that can be modified to recognize specific biological markers to provide targeted drug delivery and reduce off-target toxicity. Here, PA nanofibers that target the angiotensin I-converting enzyme and the receptor for advanced glycation end-products (RAGE) are developed, as both proteins are overexpressed in the lung with pulmonary hypertension. It is demonstrated that intravenous delivery of RAGE-targeted nanofibers containing the targeting epitope LVFFAED (LVFF) significantly accumulated within the lung in a chronic hypoxia-induced pulmonary hypertension mouse model. Using 3D light sheet fluorescence microscopy, it is shown that LVFF nanofiber localization is specific to the diseased pulmonary tissue with immunofluorescence analysis demonstrating colocalization of the targeted nanofiber to RAGE in the hypoxic lung. Furthermore, biodistribution studies show that significantly more LVFF nanofibers localized to the lung compared to major off-target organs. Targeted nanofibers are retained within the pulmonary tissue for 24 h after injection. Collectively, these data demonstrate the potential of a RAGE-targeted nanomaterial as a drug delivery platform to treat pulmonary hypertension.

Journal ArticleDOI
TL;DR: In this article, a peptide amphiphiles (PAs) were used to create supramolecular nanofibers for 3D cell culture and tissue engineering, and they were found to increase the internal order of individual nanofiber bundles and increase their persistence length.

Journal ArticleDOI
TL;DR: In this article, the self-assembly behavior of peptide amphiphiles (PAs) can be effectively tuned by replacing the carboxylic acids exposed to the aqueous media with isosteres, functionalities that share key physical or chemical properties with another chemical group.


Journal ArticleDOI
TL;DR: In this article, a peptide amphiphile nanofiber was used to localize angiotensin-converting enzyme or receptor for advanced glycation end products to smoke-injured lungs.


Journal ArticleDOI
TL;DR: In this article, the authors employed an atomistic model to study the self-assembly of peptide amphiphiles (PAs) containing valine-glutamic acid (VE) dimeric repeats.
Abstract: Self-assembly of high-aspect-ratio filaments containing β-sheets has attracted much attention due to potential use in bioengineering and biomedicine. However, precisely predicting the assembled morphologies remains a grand challenge because of insufficient understanding of the self-assembly process. We employed an atomistic model to study the self-assembly of peptide amphiphiles (PAs) containing valine-glutamic acid (VE) dimeric repeats. By changing of the sequence length, the assembly morphology changes from flat ribbon to left-handed twisted ribbon, implying a relationship between β-sheet twist and strength of interstrand hydrogen bonds. The calculations are used to quantify this relationship including both magnitude and sign of the ribbon twist angle. Interestingly, a change in chirality is observed when we introduce the RGD epitope into the C-terminal of VE repeats, suggesting arginine and glycine's role in suppressing right-handed β-sheet formation. This study provides insight into the relationship between β-sheet twist and self-assembled nanostructures including a possible design rule for PA self-assembly.

Journal ArticleDOI
01 Sep 2021
TL;DR: Targeted self‐assembled peptide amphiphile nanofibers are developed that cleave in response to biochemical cues expressed in atherosclerotic lesions to deliver a liver X receptor agonist (LXR) to enhance macrophage cholesterol efflux.
Abstract: Atherosclerotic plaque remains the leading contributor to cardiovascular disease and requires invasive surgical procedures for its removal. Nanomedicine offers a minimally invasive approach to alleviate plaque burden by targeted therapeutic delivery. However, nanocarriers are limited without the ability to sense and respond to the diseased microenvironment. In this study, targeted self‐assembled peptide amphiphile (PA) nanofibers are developed that cleave in response to biochemical cues expressed in atherosclerotic lesions—reactive oxygen species (ROS) and intracellular glutathione—to deliver a liver X receptor agonist (LXR) to enhance macrophage cholesterol efflux. The PAs release LXR in response to physiological levels of ROS and reducing agents and can be co‐assembled with plaque‐targeting PAs to form nanofibers. The resulting LXR PA nanofibers promoted cholesterol efflux from macrophages in vitro as well as LXR alone and with lower cytotoxicity. Further, the ApoA1‐LXR PA nanofibers target plaque within an atherosclerotic mouse model in vivo and activate ATP‐binding cassette A1 (ABCA1) expression as well as LXR alone with reduced liver toxicity. Taken together, these results demonstrate the potential of self‐assembled PA nanofibers for controlled therapeutic delivery to the atherosclerotic niche.