scispace - formally typeset
Search or ask a question

Showing papers by "Sho Yamasaki published in 2023"


Journal ArticleDOI
TL;DR: In this article , a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages.
Abstract: Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside–producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd–induced lipid substrates that define Gaucher’s disease, Wolman’s disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis–induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.

3 citations


Journal ArticleDOI
24 Jan 2023-Immunity
TL;DR: In this article , a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), was used to block the pathways of macrophage-inducible C-type lectin (Mincle).

2 citations


Journal ArticleDOI
TL;DR: In this article , the authors performed nuclear magnetic resonance (NMR) analysis of human Mincle, revealing that titration of trehalose harboring a linear short acyl chain showed a chemical shift perturbation of hydrophobic residues next to the Ca-binding site.

Journal ArticleDOI
TL;DR: Lorè et al. as discussed by the authors presented an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) for the purpose of open access in other forums, provided the original author(s) and the copyright owners are credited.
Abstract: COPYRIGHT © 2023 Lorè, Yamasaki, Simmonds and Jo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. TYPE Editorial PUBLISHED 26 May 2023 DOI 10.3389/fimmu.2023.1201159

Journal ArticleDOI
TL;DR: In this paper , a variety of 6-C-linked α,α,α-trehalose glycolipids containing inverted esters, ketone, carboxy or no carbonyl moieties were investigated.

Journal ArticleDOI
TL;DR: In this paper , an aryl-functionalised trehalose glycolipid, AF-2, was shown to lead to the release of cytokines and chemokines, including IL-6, MIP-2 and TNF-α, in a Mincle-dependent manner.
Abstract: α,α'-Trehalose 6,6'-glycolipids have long been known for their immunostimulatory properties. The adjuvanticity of α,α'-trehalose 6,6'-glycolipids is mediated by signalling through the macrophage inducible C-type lectin (Mincle) and the induction of an inflammatory response. Herein, we present an aryl-functionalised trehalose glycolipid, AF-2, that leads to the release of cytokines and chemokines, including IL-6, MIP-2 and TNF-α, in a Mincle-dependent manner. Furthermore, plate-coated AF-2 also leads to the Mincle-independent production of IL-1β, which is unprecedented for this class of glycolipid. Upon investigation into the mode of action of plate-coated AF-2, it was observed that the treatment of WT and Mincle-/- bone marrow derived macrophages (BMDM), murine RAW264.7 cells, and human monocytes with AF-2 led to lytic cell death, as evidenced using Sytox Green and lactate dehydrogenase assays, and confocal and scanning electron microscopy. The requirement for functional Gasdermin D and Caspase-1 for IL-1β production and cell death by AF-2 confirmed pyroptosis as the mode of action of AF-2. The inhibition of NLRP3 and K+ efflux reduced AF-2 mediated IL-1β production and cell death, and allowed us to conclude that AF-2 leads to Capase-1 dependent NLRP3 inflammasome-mediated cell death. The unique mode of action of plate-coated AF-2 was surprising and highlights how the physical presentation of Mincle ligands can lead to dramatically different immunological outcomes.

Posted ContentDOI
07 Jun 2023-bioRxiv
TL;DR: In this article , the authors traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time.
Abstract: SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR– and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). In donors exhibiting sustained anti-S antibody titers (designated as “sustainers”), S-reactive T cell clonotypes detected immediately after 2nd vaccination polarized to follicular helper T (Tfh) cells, which was less obvious in “decliners”. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic bacteria. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly-responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh cells upon vaccination contributes to the longevity of anti-S antibody titers.



Journal ArticleDOI
TL;DR: In this paper , the authors investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells.
Abstract: The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2–like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion–activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries. Description Dendritic cell responses induced by the FcRγ subunit depend on when receptor abundance peaks. Timing matters for dendritic cell signaling Dendritic cells detect pathogens through pattern recognition receptors, which generate distinct changes in gene expression and cytokine production, even when the receptors signal through the common subunit FcRγ. Watanabe et al. uncovered how two receptors for different mycobacterial components, Dectin-2 and Mincle, can generate divergent dendritic cell responses through FcRγ (see also the Focus by Blamberg and Lang). In contrast to the constitutively expressed Dectin-2, which generated strong signaling through FcRγ shortly after stimulation, Mincle expression was induced after stimulation, and signaling was delayed. The Dectin-2 gene expression and cytokine profile was mimicked by constitutively expressed Mincle or a chimeric FcRγ receptor stimulated in a robust, sustained fashion. Thus, the kinetics of FcRγ signaling determines the changes in gene expression and cytokine output that occur in dendritic cells in response to receptor stimulation. -- WW

Journal ArticleDOI
01 Apr 2023-iScience
TL;DR: A 25-year-old patient with a primary immunodeficiency lacking immunoglobulin production experienced a relapse after a 239-day period of persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as discussed by the authors .

Journal ArticleDOI
TL;DR: In this article , the role of dectin-1 in anti-A. fumigatus response in an experimental model of acute invasive aspergillosis was investigated.
Abstract: Aspergillus fumigatus is a ubiquitous, yet potentially pathogenic, mold. The immune system employs innate receptors, such as dectin-1, to recognize fungal pathogens, but the immunological networks that afford protection are poorly explored. Here, we investigated the role of dectin-1 in anti-A. fumigatus response in an experimental model of acute invasive aspergillosis. Mice lacking dectin-1 presented enhanced signs of inflammation, with increased production of inflammatory cytokines and neutrophil infiltration, quickly succumbing to the infection. Curiously, resistance did not require T/B lymphocytes or IL-17. Instead, the main effector function of dectin-1 was the preservation of the NK cell population in the kidneys by the provision of the cytokine IL-15. While the depletion of NK cells impaired host defense in wild-type mice, IL-15 administration restored antifungal responses in dectin-1-deficient mice. Our results uncover a new effector mechanism for dectin-1 in anti-Aspergillus defense, adding an alternative approach to understand the pathophysiology of this infection.

Journal ArticleDOI
TL;DR: In this article , a ligand-controlled Tsuji-Trost-type glycosylation methodology was established to directly prepare a variety of these 2-exo-methylene pseudo-glycoconjugates, including glucosylceramide analogues, in an α- or β-selective manner.
Abstract: Glycoconjugate analogues in which the sp3-hybridized C2 position of the carbohydrate structure (normally bearing a hydroxyl group) is converted to a compact sp2-hybridized exo-methylene group are expected to have unique biological activities. We established ligand-controlled Tsuji-Trost-type glycosylation methodology to directly prepare a variety of these 2-exo-methylene pseudo-glycoconjugates, including glucosylceramide analogues, in an α- or β-selective manner. Glucocerebrosidase GBA1 cleaves these synthetic pseudo-β-glucosylceramides similarly to native glucosylceramides. The pseudo-glucosylceramides exhibit selective ligand activity towards macrophage-inducible C-type lectin (Mincle), but unlike native glucosylceramides, are inactive towards CD1d.

Journal ArticleDOI
TL;DR: In this paper , Hachimijiogan (HJG), a traditional Japanese herbal medicine (Kampo), has an adjuvant effect for Acetylcholine estelase inhibitors (AChEIs) and that it delays the deterioration of the cognitive dysfunction of female patients with mild AD.
Abstract: Background: Alzheimer’s disease (AD), the most prevalent form of dementia, is a debilitating, progressive neurodegeneration. Amino acids play a wide variety of physiological and pathophysiological roles in the nervous system, and their levels and disorders related to their synthesis have been related to cognitive impairment, the core feature of AD. Our previous multicenter trial showed that hachimijiogan (HJG), a traditional Japanese herbal medicine (Kampo), has an adjuvant effect for Acetylcholine estelase inhibitors (AChEIs) and that it delays the deterioration of the cognitive dysfunction of female patients with mild AD. However, there are aspects of the molecular mechanism(s) by which HJG improves cognitive dysfunction that remain unclear. Objectives: To elucidate through metabolomic analysis the mechanism(s) of HJG for mild AD based on changes in plasma metabolites. Methods: Sixty-seven patients with mild AD were randomly assigned to either an HJG group taking HJG extract 7.5 g/day in addition to AChEI or to a control group treated only with AChEI (HJG:33, Control:34). Blood samples were collected before, 3 months, and 6 months after the first drug administration. Comprehensive metabolomic analyses of plasma samples were done by optimized LC-MS/MS and GC-MS/MS methods. The web-based software MetaboAnalyst 5.0 was used for partial least square-discriminant analysis (PLS-DA) to visualize and compare the dynamics of changes in the concentrations of the identified metabolites. Results: The VIP (Variable Importance in Projection) score of the PLS-DA analysis of female participants revealed a significantly higher increase in plasma metabolite levels after HJG administration for 6 months than was seen in the control group. In univariate analysis, the aspartic acid level of female participants showed a significantly higher increase from baseline after HJG administration for 6 months when compared with the control group. Conclusion: Aspartic acid was a major contributor to the difference between the female HJG and control group participants of this study. Several metabolites were shown to be related to the mechanism of HJG effectiveness for mild AD.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper showed that histologically Sema4A-positive non-small cell lung cancer (NSCLC) responded significantly better to anti-programmed cell death 1 (PD-1) antibody than Semaphorin 4A-negative NSCLC.
Abstract: Immune checkpoint inhibitors (ICIs) have caused revolutionary changes in cancer treatment, but low response rates remain a challenge. Semaphorin 4A (Sema4A) modulates the immune system through multiple mechanisms in mice, although the role of human Sema4A in the tumor microenvironment remains unclear. This study demonstrates that histologically Sema4A-positive non–small cell lung cancer (NSCLC) responded significantly better to anti–programmed cell death 1 (PD-1) antibody than Sema4A-negative NSCLC. Intriguingly, SEMA4A expression in human NSCLC was mainly derived from tumor cells and was associated with T cell activation. Sema4A promoted cytotoxicity and proliferation of tumor-specific CD8+ T cells without terminal exhaustion by enhancing mammalian target of rapamycin complex 1 and polyamine synthesis, which led to improved efficacy of PD-1 inhibitors in murine models. Improved T cell activation by recombinant Sema4A was also confirmed using isolated tumor-infiltrating T cells from patients with cancer. Thus, Sema4A might be a promising therapeutic target and biomarker for predicting and promoting ICI efficacy.