scispace - formally typeset
Search or ask a question

Showing papers by "Tak W. Mak published in 2005"


Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: The transcription factor IRF-5 is identified as a new, principal downstream regulator of the TLR–MyD88 signalling pathway and a potential target of therapeutic intervention to control harmful immune responses.
Abstract: The activation of Toll-like receptors (TLRs) is central to innate and adaptive immunity. All TLRs use the adaptor MyD88 for signalling, but the mechanisms underlying the MyD88-mediated gene induction programme are as yet not fully understood. Here, we demonstrate that the transcription factor IRF-5 is generally involved downstream of the TLR-MyD88 signalling pathway for gene induction of proinflammatory cytokines, such as interleukin-6 (IL-6), IL-12 and tumour-necrosis factor-alpha. In haematopoietic cells from mice deficient in the Irf5 gene (Irf5-/- mice), the induction of these cytokines by various TLR ligands is severely impaired, whereas interferon-alpha induction is normal. We also provide evidence that IRF-5 interacts with and is activated by MyD88 and TRAF6, and that TLR activation results in the nuclear translocation of IRF-5 to activate cytokine gene transcription. Consistently, Irf5-/- mice show resistance to lethal shock induced by either unmethylated DNA or lipopolysaccharide, which correlates with a marked decrease in the serum levels of proinflammatory cytokines. Thus, our study identifies IRF-5 as a new, principal downstream regulator of the TLR-MyD88 signalling pathway and a potential target of therapeutic intervention to control harmful immune responses.

1,007 citations


Journal ArticleDOI
TL;DR: DJ-1 expression was increased compared to paired nonneoplastic lung tissue, and correlated positively with relapse incidence, and is thus a key negative regulator of PTEN that may be a useful prognostic marker for cancer.

530 citations


Journal ArticleDOI
TL;DR: It is demonstrated that loss of RhoC does not affect tumor development but decreases tumor cell motility and metastatic cell survival leading to a drastic inhibition of metastasis.
Abstract: The Rho proteins are Ras-related guanosine triphosphatases (GTPases) that function in cytoskeletal reorganization, cell migration, and stress fiber and focal adhesion formation. Overexpression of RhoC enhances the ability of melanoma cells to exit the blood and colonize the lungs. However, in vivo confirmation of RhoC's role in metastasis has awaited a RhoC-deficient mouse model. Here we report the generation of RhoC-deficient mice and show that RhoC is dispensable for embryonic and post-natal development. We demonstrate that loss of RhoC does not affect tumor development but decreases tumor cell motility and metastatic cell survival leading to a drastic inhibition of metastasis.

313 citations


Journal ArticleDOI
20 May 2005-Cell
TL;DR: The studies indicate the existence of a Cyt c- and apoptosome-independent but Apaf-1-dependent mechanism(s) for caspase activation and fibroblasts from the KA/KA mice were resistant to apoptosis, their thymocytes were markedly more sensitive to death stimuli than Apaf.

263 citations


Journal ArticleDOI
TL;DR: It is shown that muscle-specific deletion of Pten protected mice from insulin resistance and diabetes caused by high-fat feeding, and these mice were spared from developing hyperinsulinemia and islet hyperplasia.
Abstract: Pten (phosphatase with tensin homology), a dual-specificity phosphatase, is a negative regulator of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Pten regulates a vast array of biological functions including growth, metabolism, and longevity. Although the PI3K/Akt pathway is a key determinant of the insulin-dependent increase in glucose uptake into muscle and adipose cells, the contribution of this pathway in muscle to whole-body glucose homeostasis is unclear. Here we show that muscle-specific deletion of Pten protected mice from insulin resistance and diabetes caused by high-fat feeding. Deletion of muscle Pten resulted in enhanced insulin-stimulated 2-deoxyglucose uptake and Akt phosphorylation in soleus but, surprisingly, not in extensor digitorum longus muscle compared to littermate controls upon high-fat feeding, and these mice were spared from developing hyperinsulinemia and islet hyperplasia. Muscle Pten may be a potential target for treatment or prevention of insulin resistance and diabetes.

234 citations


Journal ArticleDOI
TL;DR: The c-IAPs represent a pair of TNFR-associated ubiquitin protein ligases in which one regulates the expression of the other by a posttranscriptional and E3-dependent mechanism and are potentiated by the adaptor function of TRAF2.
Abstract: Inhibitor of apoptosis proteins (IAPs) c-IAP1 and c-IAP2 were identified as part of the tumor necrosis factor receptor 2 (TNFR2) signaling complex and have been implicated as intermediaries in tumor necrosis factor alpha signaling. Like all RING domain-containing IAPs, c-IAP1 and c-IAP2 have ubiquitin protein ligase (E3) activity. To explore the function of c-IAP1 in a physiologic setting, c-IAP1-deficient mice were generated by homologous gene recombination. These animals are viable and have no obvious sensitization to proapoptotic stimuli. Cells from c-IAP1 / mice do, however, express markedly elevated levels of c-IAP2 protein in the absence of increased c-IAP2 mRNA. In contrast to reports implicating c-IAPs in the activation of NF-B, resting and cytokine-induced NF-B activation was not impaired in c-IAP1-deficient cells. Transient transfection studies with wild-type and E3-defective c-IAP1 revealed that c-IAP2 is a direct target for c-IAP1mediated ubiquitination and subsequent degradation, which are potentiated by the adaptor function of TRAF2. Thus, the c-IAPs represent a pair of TNFR-associated ubiquitin protein ligases in which one regulates the expression of the other by a posttranscriptional and E3-dependent mechanism.

194 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the specific binding of TRAF2 to CD40 is required for efficient signaling on the NF-κB, Jun N-terminal protein kinase (JNK), and p38 axis, and it is provided evidence that TRAF6 regulates CD40 signal transduction not only through its direct binding toCD40 but also indirectly via its association with TRAf2.
Abstract: The emerging role of CD40, a tumor necrosis factor (TNF) receptor family member, in immune regulation, disease pathogenesis, and cancer therapy necessitates the analysis of CD40 signal transduction in a wide range of tissue types. In this study we present evidence that the CD40-interacting proteins TRAF2 and TRAF6 play an important physiological role in CD40 signaling in nonhemopoietic cells. Using mutational analysis of the CD40 cytoplasmic tail, we demonstrate that the specific binding of TRAF2 to CD40 is required for efficient signaling on the NF-κB, Jun N-terminal protein kinase (JNK), and p38 axis. In fibroblasts lacking TRAF2 or in carcinoma cells in which TRAF2 has been depleted by RNA interference, the CD40-mediated activation of NF-κB and JNK is significantly reduced, and the activation of p38 and Akt is severely impaired. Interestingly, whereas the TRAF6-interacting membrane-proximal domain of CD40 has a minor role in signal transduction, studies utilizing TRAF6 knockout fibroblasts and RNA interference in epithelial cells reveal that the CD40-induced activation of NF-κB, JNK, p38, and Akt requires the integrity of TRAF6. Furthermore, we provide evidence that TRAF6 regulates CD40 signal transduction not only through its direct binding to CD40 but also indirectly via its association with TRAF2. These observations provide novel insight into the mechanisms of CD40 signaling and the multiple roles played by TRAF6 in signal transduction.

74 citations