scispace - formally typeset
Search or ask a question

Showing papers by "Timothy B. Stockwell published in 2016"


Journal ArticleDOI
TL;DR: The effective population size of influenza A virus across donor-recipient pairs from the first wave of the 2009 H1N1 pandemic was estimated to be approximately 100–200 contributing members, which enabled the transmission of multiple lineages, including antigenic variants.
Abstract: Influenza A virus is characterized by high genetic diversity. However, most of what is known about influenza evolution has come from consensus sequences sampled at the epidemiological scale that only represent the dominant virus lineage within each infected host. Less is known about the extent of within-host virus diversity and what proportion of this diversity is transmitted between individuals. To characterize virus variants that achieve sustainable transmission in new hosts, we examined within-host virus genetic diversity in household donor-recipient pairs from the first wave of the 2009 H1N1 pandemic when seasonal H3N2 was co-circulating. Although the same variants were found in multiple members of the community, the relative frequencies of variants fluctuated, with patterns of genetic variation more similar within than between households. We estimated the effective population size of influenza A virus across donor-recipient pairs to be approximately 100-200 contributing members, which enabled the transmission of multiple lineages, including antigenic variants.

180 citations


Journal ArticleDOI
TL;DR: F influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock appear to have adapted during its preparation, indicating that influenza virus populations can undergo rapid genetic changes during acute human infections.
Abstract: Knowledge of influenza virus evolution at the point of transmission and at the intrahost level remains limited, particularly for human hosts. Here, we analyze a unique viral data set of next-generation sequencing (NGS) samples generated from a human influenza challenge study wherein 17 healthy subjects were inoculated with cell- and egg-passaged virus. Nasal wash samples collected from 7 of these subjects were successfully deep sequenced. From these, we characterized changes in the subjects9 viral populations during infection and identified differences between the virus in these samples and the viral stock used to inoculate the subjects. We first calculated pairwise genetic distances between the subjects9 nasal wash samples, the viral stock, and the influenza virus A/Wisconsin/67/2005 (H3N2) reference strain used to generate the stock virus. These distances revealed that considerable viral evolution occurred at various points in the human challenge study. Further quantitative analyses indicated that (i) the viral stock contained genetic variants that originated and likely were selected for during the passaging process, (ii) direct intranasal inoculation with the viral stock resulted in a selective bottleneck that reduced nonsynonymous genetic diversity in the viral hemagglutinin and nucleoprotein, and (iii) intrahost viral evolution continued over the course of infection. These intrahost evolutionary dynamics were dominated by purifying selection. Our findings indicate that rapid viral evolution can occur during acute influenza infection in otherwise healthy human hosts when the founding population size of the virus is large, as is the case with direct intranasal inoculation. IMPORTANCE Influenza viruses circulating among humans are known to rapidly evolve over time. However, little is known about how influenza virus evolves across single transmission events and over the course of a single infection. To address these issues, we analyze influenza virus sequences from a human challenge experiment that initiated infection with a cell- and egg-passaged viral stock, which appeared to have adapted during its preparation. We find that the subjects9 viral populations differ genetically from the viral stock, with subjects9 viral populations having lower representation of the amino-acid-changing variants that arose during viral preparation. We also find that most of the viral evolution occurring over single infections is characterized by further decreases in the frequencies of these amino-acid-changing variants and that only limited intrahost genetic diversification through new mutations is apparent. Our findings indicate that influenza virus populations can undergo rapid genetic changes during acute human infections.

98 citations


Journal ArticleDOI
TL;DR: Evidence of convergent evolution of G gene sequence duplication and fixation over time suggests a potential fitness advantage of RSV with the G sequence duplication, and identifies multiple co-circulating clades ofRSV from both the A and B groups.
Abstract: Respiratory Syncytial Virus (RSV) is responsible for considerable morbidity and mortality worldwide and is the most important respiratory viral pathogen in infants. Extensive sequence variability within and between RSV group A and B viruses and the ability of multiple clades and sub-clades of RSV to co-circulate are likely mechanisms contributing to the evasion of herd immunity. Surveillance and large-scale whole-genome sequencing of RSV is currently limited but would help identify its evolutionary dynamics and sites of selective immune evasion. In this study, we performed complete-genome next-generation sequencing of 92 RSV isolates from infants in central Tennessee during the 2012–2014 RSV seasons. We identified multiple co-circulating clades of RSV from both the A and B groups. Each clade is defined by signature N- and O-linked glycosylation patterns. Analyses of specific RSV genes revealed high rates of positive selection in the attachment (G) gene. We identified RSV-A viruses in circulation with and without a recently reported 72-nucleotide G gene sequence duplication. Furthermore, we show evidence of convergent evolution of G gene sequence duplication and fixation over time, which suggests a potential fitness advantage of RSV with the G sequence duplication.

70 citations


Journal ArticleDOI
TL;DR: The evolutionary history of this outbreak of enterovirus D68 was characterized in detail, an intersubclade recombination event was identified, and whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them was investigated.
Abstract: In August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies. IMPORTANCE Until recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68.

55 citations


Journal ArticleDOI
TL;DR: It is reported here that EV-A71 genotype C4 was the main etiological agent of a large outbreak of HFMD and particularly of severe forms associated with central nervous system infections and the role played by other EVs in the epidemic could not be clearly established.
Abstract: Human enterovirus 71 (EV-A71) causes hand, foot and mouth disease (HFMD). EV-A71 circulates in many countries and has caused large epidemics, especially in the Asia-Pacific region, since 1997. In April 2012, an undiagnosed fatal disease with neurological involvement and respiratory distress occurred in young children admitted to the Kantha Bopha Children's Hospital in Phnom Penh, Cambodia. Most died within a day of hospital admission, causing public panic and international concern. In this study, we describe the enterovirus (EV) genotypes that were isolated during the outbreak in 2012 and the following year. From June 2012 to November 2013, 312 specimens were collected from hospitalized and ambulatory patients and tested by generic EV and specific EV-A71 reverse transcription PCR. EV-A71 was detected in 208 clinical specimens while other EVs were found in 32 patients. The VP1 gene and/or the complete genome were generated. Our phylogenetic sequencing analysis demonstrated that 80 EV-A71 strains belonged to the C4a subgenotype and 3 EV-A71 strains belonged to the B5 genotype. Furthermore, some lineages of EV-A71 were found to have appeared in Cambodia following separate introductions from neighboring countries. Nineteen EV A (CV-A6 and CV-A16), 9 EV B (EV-B83, CV-B3, CV-B2, CV-A9, E-31, E-2 and EV-B80) and 4 EV C (EV-C116, EV-C96, CV-A20 and Vaccine-related PV-3) strains were also detected. We found no molecular markers of disease severity. We report here that EV-A71 genotype C4 was the main etiological agent of a large outbreak of HFMD and particularly of severe forms associated with central nervous system infections. The role played by other EVs in the epidemic could not be clearly established.

52 citations


Journal ArticleDOI
TL;DR: This study integrates ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence and demonstrates that meaningful insights can be inferred from integrating ecosystem into phyloGeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.
Abstract: Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.

52 citations


Journal ArticleDOI
TL;DR: By propagating the virus under well-controlled laboratory conditions, it is found that the FluMist vaccine backbone could regain virulence to cause severe disease in mice and the safety of LAIVs should be closely monitored after mass vaccination.
Abstract: The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By propagating the virus under well-controlled laboratory conditions, we found that the FluMist vaccine backbone could regain virulence to cause severe disease in mice. The identification of the responsible substitutions and elucidation of the underlying mechanisms provide unique insights into the attenuation of influenza virus, which is important to basic research on vaccines, attenuation reversion, and replication. In addition, this study suggests that the safety of LAIVs should be closely monitored after mass vaccination and that novel strategies to continue to improve LAIV vaccine safety should be investigated.

39 citations


Journal ArticleDOI
28 Jun 2016
TL;DR: A sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families is presented.
Abstract: Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS) Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS) This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories

31 citations


Journal ArticleDOI
25 Feb 2016
TL;DR: This study serendipitously identified, in an established bat cell line, a fully replication-competent gammaherpesvirus; determined the complete genome sequence of the virus; and generated a viral transcript map.
Abstract: While employing deep sequencing and de novo assembly to characterize the mRNA transcript profile of a cell line derived from the microbat Myotis velifer incautus , we serendipitously identified mRNAs encoding proteins with a high level of identity to herpesviruses. A majority were closely related to proteins of equine herpesvirus 2 (EHV-2), a horse gammaherpesvirus. We demonstrated by electron microscopy the presence of herpesvirus-like particles in the microbat cells. Passage of supernatants from microbat cells to Vero cells resulted in syncytium formation, and expression of viral genes and amplification of viral DNA were demonstrated by quantitative PCR. Susceptibility of human cell lines to productive infection was also demonstrated. Next-generation sequencing and de novo assembly of the viral genome from supernatants from Vero cells yielded a single contig of approximately 130 kb with at least 77 open reading frames (ORFs), predicted microRNAs (miRNAs), and a gammaherpesvirus genomic organization. Phylogenic analysis of the envelope glycoprotein (gB) and DNA polymerase (POLD1) revealed similarity to multiple gammaherpesviruses, including those from as-yet-uncultured viruses of the Rhadinovirus genus that were obtained by deep sequencing of bat tissues. Moreover, the assembled genome revealed ORFs that share little or no homology to known ORFs in EHV-2 but are similar to accessory proteins of other gammaherpesviruses. Some also have striking homology to predicted Myotis bat proteins. Cumulatively, this study provides the first isolation and characterization of a replication-competent bat gammaherpesvirus. IMPORTANCE Bats are of significant interest as reservoirs for zoonotic viral pathogens; however, tools to dissect bat-virus interactions are limited in availability. This study serendipitously identified, in an established bat cell line, a fully replication-competent gammaherpesvirus; determined the complete genome sequence of the virus; and generated a viral transcript map. This virus can replicate in select human and nonhuman primate cell lines. However, analyses of viral sequences support a bat origin for this virus; we therefore refer to the virus as bat gammaherpesvirus 8 (BGHV8). The viral genome contains unique open reading frames that likely encode modulators of bat innate and adaptive immune signaling pathways and expresses viral miRNAs. The virus and its gene products should provide a unique tool to dissect both bat and gammaherpesvirus biology.

15 citations