scispace - formally typeset
Author

Xinchen Wang

Bio: Xinchen Wang is a academic researcher from Fuzhou University. The author has contributed to research in topic(s): Carbon nitride & Photocatalysis. The author has an hindex of 120, co-authored 349 publication(s) receiving 65072 citation(s). Previous affiliations of Xinchen Wang include King Abdulaziz University & University of Science and Technology of China.
Papers
More filters

Journal ArticleDOI
01 Jan 2009-Nature Materials
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

7,884 citations


Journal ArticleDOI
02 Jan 2012-Angewandte Chemie
TL;DR: The "polymer chemistry" of g-C(3)N(4) is described, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst.
Abstract: Polymeric graphitic carbon nitride materials (for simplicity: g-C(3)N(4)) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g-C(3)N(4) is a medium-bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the "polymer chemistry" of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g-C(3)N(4) and its modifications have a high thermal and chemical stability and can catalyze a number of "dream reactions", such as photochemical splitting of water, mild and selective oxidation reactions, and--as a coactive catalytic support--superactive hydrogenation reactions. As carbon nitride is metal-free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.

2,360 citations


Journal ArticleDOI
TL;DR: This review attempts to summarize the recent progress in the rational design and fabrication ofheterojunction photocatalysts, such as the semiconductor-semiconductor heterojunction, the semiconductors-metal heterojunctions, the silicon-carbon heteroj junction and the multicomponent heteroj conjunction.
Abstract: Semiconductor-mediated photocatalysis has received tremendous attention as it holds great promise to address the worldwide energy and environmental issues. To overcome the serious drawbacks of fast charge recombination and the limited visible-light absorption of semiconductor photocatalysts, many strategies have been developed in the past few decades and the most widely used one is to develop photocatalytic heterojunctions. This review attempts to summarize the recent progress in the rational design and fabrication of heterojunction photocatalysts, such as the semiconductor–semiconductor heterojunction, the semiconductor–metal heterojunction, the semiconductor–carbon heterojunction and the multicomponent heterojunction. The photocatalytic properties of the four junction systems are also discussed in relation to the environmental and energy applications, such as degradation of pollutants, hydrogen generation and photocatalytic disinfection. This tutorial review ends with a summary and some perspectives on the challenges and new directions in this exciting and still emerging area of research.

2,334 citations


Journal ArticleDOI
07 May 2013-Advanced Materials
TL;DR: Graphitic carbon nitride nanosheets are extracted via simple liquid-phase exfoliation of a layered bulk material, g-C3N4, to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.
Abstract: Graphitic carbon nitride nanosheets are extracted, produced via simple liquid-phase exfoliation of a layered bulk material, g-C3N4. The resulting nanosheets, having ≈2 nm thickness and N/C atomic ratio of 1.31, show an optical bandgap of 2.65 eV. The carbon nitride nanosheets are demonstrated to exhibit excellent photocatalytic activity for hydrogen evolution under visible light.

1,757 citations


Journal ArticleDOI
TL;DR: It is shown that the efficiency of hydrogen production by photochemical water reduction can be improved by approximately 1 order of magnitude by introducing the right type of mesoporosity into polymeric C(3)N(4).
Abstract: We investigated semiconductor characteristics for polymeric carbon nitride as a metal-free photocatalyst working with visible light and have shown that the efficiency of hydrogen production by photochemical water reduction can be improved by ∼1 order of magnitude by introducing the right type of mesoporosity into polymeric C3N4. We anticipate a wide rang of potential application of C3N4 as energy transducers for artificial photosynthesis in general, especially with a 3D continuous nanoarchitecture. Moreover, the results of finding photoactivity for carbon nitride nanoparticles can enrich the discussion on prebiotic chemistry of the Earth, as HCN polymer clusters are unequivocal in the solar system.

1,351 citations


Cited by
More filters

Journal ArticleDOI
01 Apr 1988-Nature
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,394 citations



Journal ArticleDOI
10 Nov 2010-Chemical Reviews
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

5,825 citations


Journal ArticleDOI
10 Jul 2013-Chemical Reviews
TL;DR: The conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes.
Abstract: A fundamental aim in the field of catalysis is the development of new modes of small molecule activation. One approach toward the catalytic activation of organic molecules that has received much attention recently is visible light photoredox catalysis. In a general sense, this approach relies on the ability of metal complexes and organic dyes to engage in single-electron-transfer (SET) processes with organic substrates upon photoexcitation with visible light. Many of the most commonly employed visible light photocatalysts are polypyridyl complexes of ruthenium and iridium, and are typified by the complex tris(2,2′-bipyridine) ruthenium(II), or Ru(bpy)32+ (Figure 1). These complexes absorb light in the visible region of the electromagnetic spectrum to give stable, long-lived photoexcited states.1,2 The lifetime of the excited species is sufficiently long (1100 ns for Ru(bpy)32+) that it may engage in bimolecular electron-transfer reactions in competition with deactivation pathways.3 Although these species are poor single-electron oxidants and reductants in the ground state, excitation of an electron affords excited states that are very potent single-electron-transfer reagents. Importantly, the conversion of these bench stable, benign catalysts to redox-active species upon irradiation with simple household lightbulbs represents a remarkably chemoselective trigger to induce unique and valuable catalytic processes. Open in a separate window Figure 1 Ruthenium polypyridyl complexes: versatile visible light photocatalysts.

4,920 citations


Journal ArticleDOI
20 May 2016-Chemical Reviews
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

3,562 citations


Network Information
Related Authors (5)
Pengju Yang

21 papers, 1.8K citations

91% related
Yuanxing Fang

49 papers, 1.9K citations

90% related
Xiufang Chen

15 papers, 7.2K citations

90% related
Ruirui Wang

8 papers, 258 citations

89% related
Dandan Zheng

9 papers, 1.1K citations

88% related
Performance
Metrics

Author's H-index: 120

No. of papers from the Author in previous years
YearPapers
202129
202031
201935
201832
201732
201616

Top Attributes

Show by:

Author's top 5 most impactful journals

Angewandte Chemie

56 papers, 15.5K citations

Applied Catalysis B-environmental

25 papers, 2.4K citations

Chemsuschem

24 papers, 2K citations

Chemical Communications

21 papers, 1.4K citations

ACS Catalysis

15 papers, 3.1K citations