scispace - formally typeset
Search or ask a question

Showing papers by "Ying Hu published in 2016"


Journal ArticleDOI
TL;DR: This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC.
Abstract: This study evaluated whether dietary resistant starch (RS) and green tea extract (GTE), which have anti-inflammatory and anticancer properties, protect against colitis-associated colorectal cancer (CAC) using a rat model, also investigated potential mechanisms of action of these agents including their effects on the gut microbiota. Rats were fed a control diet or diets containing 10% RS, 0.5% GTE or a combination of the two (RS + GTE). CAC was initiated with 2 weekly azoxymethane (AOM) injections (10mg/kg) followed by 2% dextran sodium sulphate in drinking water for 7 days after 2 weeks on diets. Rats were killed 20 weeks after the first AOM. Colon tissues and tumours were examined for histopathology by H&E, gene/protein expression by PCR and immunohistochemistry and digesta for analyses of fermentation products and microbiota populations. RS and RS + GTE (but not GTE) diets significantly (P< 0.05) decreased tumour multiplicity and adenocarcinoma formation, relative to the control diet. Effects of RS + GTE were not different from RS alone. RS diet caused significant shifts in microbial composition/diversity, with increases in Parabacteroides, Barnesiella, Ruminococcus, Marvinbryantia and Bifidobacterium as primary contributors to the shift. RS-containing diets increased short chain fatty acids (SCFA) and expression of the SCFA receptor GPR43 mRNA, and reduced inflammation (COX-2, NF-kB, TNF-α and IL-1β mRNA) and cell proliferation P< 0.05. GTE had no effect. This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC.

118 citations


Journal ArticleDOI
TL;DR: The data suggest that modifications of the current criteria to also consider volume of anaplasia and documentation of TP53 aberrations may better reflect the risk of relapse and death and enable optimization of therapeutic stratification.
Abstract: Purpose: To investigate the role and significance of TP53 mutation in diffusely anaplastic Wilms tumors (DAWTs). Experimental Design: All DAWTs registered on National Wilms Tumor Study-5 (n = 118) with available samples were analyzed for TP53 mutations and copy loss. Integrative genomic analysis was performed on 39 selected DAWTs. Results: Following analysis of a single random sample, 57 DAWTs (48%) demonstrated TP53 mutations, 13 (11%) copy loss without mutation, and 48 (41%) lacked both [defined as TP53-wild-type (wt)]. Patients with stage III/IV TP53-wt DAWTs (but not those with stage I/II disease) had significantly lower relapse and death rates than those with TP53 abnormalities. In-depth analysis of a subset of 39 DAWTs showed seven (18%) to be TP53-wt: These demonstrated gene expression evidence of an active p53 pathway. Retrospective pathology review of TP53-wt DAWT revealed no or very low volume of anaplasia in six of seven tumors. When samples from TP53-wt tumors known to contain anaplasia histologically were available, abnormal p53 protein accumulation was observed by immunohistochemistry. Conclusions: These data support the key role of TP53 loss in the development of anaplasia in WT, and support its significant clinical impact in patients with residual anaplastic tumor following surgery. These data also suggest that most DAWTs will show evidence of TP53 mutation when samples selected for the presence of anaplasia are analyzed. This suggests that modifications of the current criteria to also consider volume of anaplasia and documentation of TP53 aberrations may better reflect the risk of relapse and death and enable optimization of therapeutic stratification. Clin Cancer Res; 22(22); 5582–91. ©2016 AACR.

72 citations


Journal ArticleDOI
TL;DR: In this article, the effects of supplementation of Brazil nuts and green tea extract (GTE) capsules, alone and in combination, on targeted biomarkers, such as selenoproteins, WNT signalling pathway, inflammation and methylation, were evaluated.
Abstract: Se and green tea have been shown in epidemiological, observational and preclinical studies to be inversely related to the risk of developing colorectal cancer (CRC). However, there are limited studies to evaluate their regulatory effects on genes/proteins that relate to CRC oncogenesis in human subjects, such as selenoproteins, WNT signalling pathway, inflammation and methylation. This study examined the effects of supplementation of Se using Brazil nuts and green tea extract (GTE) capsules, alone and in combination, on targeted biomarkers. In total, thirty-two volunteers (>50 years of age) with plasma Se≤1·36 µmol/l were randomised to one of three treatment groups: nine to Se (approximately 48 µg/d) as six Brazil nuts, eleven to four GTE capsules (800 mg (-)-epigallocatechin-3-gallate) and twelve to a combination of Brazil nuts and GTE. Blood and rectal biopsies were obtained before and after each intervention. Plasma Se levels, rectal selenoprotein P (SePP) and β-catenin mRNA increased significantly in subjects consuming Brazil nuts alone or in combination, whereas rectal DNA methyltransferase (DNMT1) and NF-κB mRNA were reduced significantly in subjects consuming GTE alone or in combination. None of the interventions significantly affected rectal acetylated histone H3 or Ki-67 expression at the protein level or plasma C-reactive protein. Effects of the combination of Brazil nuts and GTE did not differ from what would be expected from either agent alone. In conclusion, supplementation of Brazil nuts and/or GTE regulates targeted biomarkers related to CRC oncogenesis, specifically genes associated with selenoproteins (SePP), WNT signalling (β-catenin), inflammation (NF-κB) and methylation (DNMT1). Their combination does not appear to provide additional effects compared with either agent alone.

46 citations


Journal ArticleDOI
TL;DR: Variants in the oxidoreductase PYROXD1 are characterized as a cause of early-onset myopathy with distinctive histopathology and altered redox regulation as a primary cause of congenital muscle disease.
Abstract: This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.

39 citations


Journal ArticleDOI
TL;DR: It is demonstrated that higher expression of Cnot7 drives tumor cell autonomous metastatic potential, which requires its deadenylase activity, and metastasis promotion by CNOT7 is dependent on interaction with CNOT1 and TOB1.
Abstract: Accumulating evidence supports the role of an aberrant transcriptome as a driver of metastatic potential. Deadenylation is a general regulatory node for post-transcriptional control by microRNAs and other determinants of RNA stability. Previously, we demonstrated that the CCR4-NOT scaffold component Cnot2 is an inherited metastasis susceptibility gene. In this study, using orthotopic metastasis assays and genetically engineered mouse models, we show that one of the enzymatic subunits of the CCR4-NOT complex, Cnot7, is also a metastasis modifying gene. We demonstrate that higher expression of Cnot7 drives tumor cell autonomous metastatic potential, which requires its deadenylase activity. Furthermore, metastasis promotion by CNOT7 is dependent on interaction with CNOT1 and TOB1. CNOT7 ribonucleoprotein-immunoprecipitation (RIP) and integrated transcriptome wide analyses reveal that CNOT7-regulated transcripts are enriched for a tripartite 3’UTR motif bound by RNA-binding proteins known to complex with CNOT7, TOB1, and CNOT1. Collectively, our data support a model of CNOT7, TOB1, CNOT1, and RNA-binding proteins collectively exerting post-transcriptional control on a metastasis suppressive transcriptional program to drive tumor cell metastasis.

34 citations


Journal ArticleDOI
TL;DR: This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant of breast cancer metastasis, and identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy.
Abstract: Metastasis remains the primary cause of patient morbidity and mortality in solid tumors and is due to the action of a large number of tumor-autonomous and non-autonomous factors. Here we report the results of a genome-wide integrated strategy to identify novel metastasis susceptibility candidate genes and molecular pathways in breast cancer metastasis. This analysis implicates a number of transcriptional regulators and suggests cell-mediated immunity is an important determinant. Moreover, the analysis identified novel or FDA-approved drugs as potentially useful for anti-metastatic therapy. Further explorations implementing this strategy may therefore provide a variety of information for clinical applications in the control and treatment of advanced neoplastic disease.

18 citations