scispace - formally typeset
Search or ask a question

Showing papers in "Carcinogenesis in 2016"


Journal ArticleDOI
TL;DR: It is posited that in carcinogenesis, aberrant cell signaling due to exaggerated and continually high lactate levels yields an inappropriate positive feedback loop that increases glucose uptake, glycolysis, lactate production and release, decreases mitochondrial function and clearance and upregulates glyCOlytic enzyme and monocarboxylate transporter expression thereby supporting angiogenesis, immune escape, cell migration, metastasis and self-sufficient metabolism.
Abstract: Herein, we use lessons learned in exercise physiology and metabolism to propose that augmented lactate production ('lactagenesis'), initiated by gene mutations, is the reason and purpose of the Warburg Effect and that dysregulated lactate metabolism and signaling are the key elements in carcinogenesis. Lactate-producing ('lactagenic') cancer cells are characterized by increased aerobic glycolysis and excessive lactate formation, a phenomenon described by Otto Warburg 93 years ago, which still remains unexplained. After a hiatus of several decades, interest in lactate as a player in cancer has been renewed. In normal physiology, lactate, the obligatory product of glycolysis, is an important metabolic fuel energy source, the most important gluconeogenic precursor, and a signaling molecule (i.e. a 'lactormone') with major regulatory properties. In lactagenic cancers, oncogenes and tumor suppressor mutations behave in a highly orchestrated manner, apparently with the purpose of increasing glucose utilization for lactagenesis purposes and lactate exchange between, within and among cells. Five main steps are identified (i) increased glucose uptake, (ii) increased glycolytic enzyme expression and activity, (iii) decreased mitochondrial function, (iv) increased lactate production, accumulation and release and (v) upregulation of monocarboxylate transporters MTC1 and MCT4 for lactate exchange. Lactate is probably the only metabolic compound involved and necessary in all main sequela for carcinogenesis, specifically: angiogenesis, immune escape, cell migration, metastasis and self-sufficient metabolism. We hypothesize that lactagenesis for carcinogenesis is the explanation and purpose of the Warburg Effect. Accordingly, therapies to limit lactate exchange and signaling within and among cancer cells should be priorities for discovery.

406 citations


Journal ArticleDOI
TL;DR: Panel of miRNAs, which include metastasis promotingmiR-200 family and miR-203, as well as oncogenic and tumor-suppressive mi RNAs, that can serve as prognostic markers for MBC, and early detection markers of metastasis in BC are identified.
Abstract: Metastasis is the principal cause of high morbidity and mortality among breast cancer (BC) patients. Identification of markers that can be routinely monitored to predict onset of metastasis in BC patients and prognosis of metastatic breast cancer (MBC) patients would increase their median survival. In this study, plasma miRNAs of 40 MBC patients were profiled by TaqMan low density arrays and miRNAs with prognostic capacity were identified. The candidates were validated initially in the samples of 237 MBC patients and subsequently in 335 samples from an independent study cohort of BC patients. Sixteen miRNAs were established to be significantly associated with overall survival, and were termed as prognostic miRNA panel template (PROMPT). These included miR-141, miR-144, miR-193b, miR-200a, miR-200b, miR-200c, miR-203, miR-210, miR-215, miR-365, miR-375, miR-429, miR-486-5p, miR-801, miR-1260 and miR-1274a. Additionally, 11 of these miRNAs were also associated with progression-free survival. Their prognostic significance was further confirmed in samples from a second study cohort of BC patients. In addition, miR-200a, miR-200b, miR-200c, miR-210, miR-215 and miR-486-5p were found to be significantly associated with onset of metastasis up to 2 years prior to clinical diagnosis in BC patients. We have thus identified panels of miRNAs, which include metastasis promoting miR-200 family and miR-203, as well as oncogenic and tumor-suppressive miRNAs, that can serve as prognostic markers for MBC, and early detection markers of metastasis in BC.

123 citations


Journal ArticleDOI
TL;DR: In summary, highly sensitive signatures of circulating microRNAs enabling non-invasive early detection and prognosis prediction of colon cancer were identified.
Abstract: Early detection of colorectal cancer is the main prerequisite for successful treatment and reduction of mortality. Circulating microRNAs were previously identified as promising diagnostic, prognostic and predictive biomarkers. The purpose of this study was to identify serum microRNAs enabling early diagnosis and prognosis prediction of colon cancer. In total, serum samples from 427 colon cancer patients and 276 healthy donors were included in three-phase biomarker study. Large-scale microRNA expression profiling was performed using Illumina small RNA sequencing. Diagnostic and prognostic potential of identified microRNAs was validated on independent training and validation sets of samples using RT-qPCR. Fifty-four microRNAs were found to be significantly deregulated in serum of colon cancer patients compared to healthy donors (P < 0.01). A diagnostic four-microRNA signature consisting of miR-23a-3p, miR-27a-3p, miR-142-5p and miR-376c-3p was established (AUC = 0.917), distinguishing colon cancer patients from healthy donors with sensitivity of 89% and specificity of 81% (AUC = 0.922). This panel of microRNAs exhibited high diagnostic performance also when analyzed separately in colon cancer patients in early stages of the disease (T1-4N0M0; AUC = 0.877). Further, a prognostic panel based on the expression of miR-23a-3p and miR-376c-3p independent of TNM stage was established (HR 2.30; 95% CI 1.44-3.66; P < 0.0004). In summary, highly sensitive signatures of circulating microRNAs enabling non-invasive early detection and prognosis prediction of colon cancer were identified.

120 citations


Journal ArticleDOI
TL;DR: This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC.
Abstract: This study evaluated whether dietary resistant starch (RS) and green tea extract (GTE), which have anti-inflammatory and anticancer properties, protect against colitis-associated colorectal cancer (CAC) using a rat model, also investigated potential mechanisms of action of these agents including their effects on the gut microbiota. Rats were fed a control diet or diets containing 10% RS, 0.5% GTE or a combination of the two (RS + GTE). CAC was initiated with 2 weekly azoxymethane (AOM) injections (10mg/kg) followed by 2% dextran sodium sulphate in drinking water for 7 days after 2 weeks on diets. Rats were killed 20 weeks after the first AOM. Colon tissues and tumours were examined for histopathology by H&E, gene/protein expression by PCR and immunohistochemistry and digesta for analyses of fermentation products and microbiota populations. RS and RS + GTE (but not GTE) diets significantly (P< 0.05) decreased tumour multiplicity and adenocarcinoma formation, relative to the control diet. Effects of RS + GTE were not different from RS alone. RS diet caused significant shifts in microbial composition/diversity, with increases in Parabacteroides, Barnesiella, Ruminococcus, Marvinbryantia and Bifidobacterium as primary contributors to the shift. RS-containing diets increased short chain fatty acids (SCFA) and expression of the SCFA receptor GPR43 mRNA, and reduced inflammation (COX-2, NF-kB, TNF-α and IL-1β mRNA) and cell proliferation P< 0.05. GTE had no effect. This is the first study that demonstrates chemopreventive effects of RS (but not GTE) in a rodent CAC model, suggesting RS might have benefit to patients with ulcerative colitis who are at an increased risk of developing CRC.

118 citations


Journal ArticleDOI
TL;DR: No country can afford to treat its way out of the cancer problem, and opportunities for prevention and early detection, including precision prevention based on recent advances in cancer biology are described.
Abstract: Cancer burden worldwide is projected to rise from 14 million new cases in 2012 to 24 million in 2035. Although the greatest increases will be in developing countries, where cancer services are already hard pressed, even the richest nations will struggle to meet demands of increasing patient numbers and spiralling treatment costs. No country can treat its way out of the cancer problem. Consequently, cancer control must combine improvements in treatment with greater emphasis on prevention and early detection. Cancer prevention is founded on describing the burden of cancer, identifying the causes and evaluating and implementing preventive interventions. Around 40-50% of cancers could be prevented if current knowledge about risk factors was translated into effective public health strategies. The benefits of prevention are attested to by major successes, for example, in tobacco control, vaccination against oncogenic viruses, reduced exposure to environmental and occupational carcinogens, and screening. Progress is still needed in areas such as weight control and physical activity. Fresh impetus for prevention and early detection will come through interdisciplinary approaches, encompassing knowledge and tools from advances in cancer biology. Examples include mutation profiles giving clues about aetiology and biomarkers for early detection, to stratify individuals for screening or for prognosis. However, cancer prevention requires a broad perspective stretching from the submicroscopic to the macropolitical, recognizing the importance of molecular profiling and multisectoral engagement across urban planning, transport, environment, agriculture, economics, etc., and applying interventions that may just as easily rely on a legislative measure as on a molecule.

102 citations


Journal ArticleDOI
TL;DR: Roughly 27% of miRNAs are commonly expressed in colonic tissue; of these, over 86% are dysregulated between carcinoma and normal tissue when applying a false discovery rate of 0.05.
Abstract: MiRNAs are small, non-protein-coding RNA molecules that regulate gene expression either by post-transcriptionally suppressing mRNA translation or by mRNA degradation. We examine differentially expressed miRNAs in colorectal carcinomas, adenomas and normal colonic mucosa. Data come from population-based studies of colorectal cancer conducted in Utah and the Kaiser Permanente Medical Care Program. A total of 1893 carcinoma/normal-paired samples and 290 adenoma tissue samples were run on the Agilent Human miRNA Microarray V19.0 which contained 2006 miRNAs. We tested for significant differences in miRNA expression between paired carcinoma/adenoma/normal colonic tissue samples. Fewer than 600 miRNAs were expressed in >80% of people for colonic tissue; of these 86.5% were statistically differentially expressed between carcinoma and normal colonic mucosa using a false discovery rate of 0.05. Roughly half of these differentially expressed miRNAs showed a progression in levels of expression from normal to adenoma to carcinoma tissue. Other miRNAs appeared to be altered at the normal to adenoma stage, while others were only altered at the adenoma to carcinoma stage or only at the normal to carcinoma stage. Evaluation of the Agilent platform showed a high degree of repeatability (r = 0.98) and reasonable agreement with the NanoString platform. Our data suggest that miRNAs are highly dysregulated in colorectal tissue among individuals with colorectal cancer; the pattern of disruption varies by miRNA as tissue progresses from normal to adenoma to carcinoma.

94 citations


Journal ArticleDOI
TL;DR: This review provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of Mutational signatures and discusses their future potential applications and perspectives within the field.
Abstract: Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposed for many of them. This review provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.

92 citations


Journal ArticleDOI
TL;DR: The role for epigenetics in regulation of NOTCH signaling in breast cancer may constitute a common mechanism of activation of oncogenic signals and this study provides support for epigenetic-targeting strategies in anticancer approaches.
Abstract: DNA hypomethylation was previously implicated in cancer progression and metastasis. The purpose of this study was to examine whether stilbenoids, resveratrol and pterostilbene thought to exert anticancer effects, target genes with oncogenic function for de novo methylation and silencing, leading to inactivation of related signaling pathways. Following Illumina 450K, genome-wide DNA methylation analysis reveals that stilbenoids alter DNA methylation patterns in breast cancer cells. On average, 75% of differentially methylated genes have increased methylation, and these genes are enriched for oncogenic functions, including NOTCH signaling pathway. MAML2, a coactivator of NOTCH targets, is methylated at the enhancer region and transcriptionally silenced in response to stilbenoids, possibly explaining the downregulation of NOTCH target genes. The increased DNA methylation at MAML2 enhancer coincides with increased occupancy of repressive histone marks and decrease in activating marks. This condensed chromatin structure is associated with binding of DNMT3B and decreased occupancy of OCT1 transcription factor at MAML2 enhancer, suggesting a role of DNMT3B in increasing methylation of MAML2 after stilbenoid treatment. Our results deliver a novel insight into epigenetic regulation of oncogenic signals in cancer and provide support for epigenetic-targeting strategies as an effective anticancer approach.

79 citations


Journal ArticleDOI
TL;DR: In this review, the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan are discussed.
Abstract: SIRT6, a member of the mammalian sirtuins family, functions as a mono-ADP-ribosyl transferase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. SIRT6 regulates diverse cellular functions such as transcription, genome stability, telomere integrity, DNA repair, inflammation and metabolic related diseases such as diabetes, obesity and cancer. In this review, we will discuss the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan.

75 citations


Journal ArticleDOI
TL;DR: Findings indicated that rs2147578 in lnc-LAMC2-1:1 might be a genetic modifier for the development of CRC.
Abstract: Genome-wide association studies (GWASs) have identified multiple susceptibility loci of colorectal cancer (CRC), however, causative polymorphisms have not been fully elucidated. Long non-coding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs that involved in a wide variety of biological processes. We hypothesized that single nucleotide polymorphisms (SNPs) in lncRNA may associate with the CRC risk by influencing lncRNA functions. To evaluate the effects of SNPs on CRC susceptibility in Chinese populations, we first screened out all potentially functional SNPs in exons of lncRNAs located in CRC susceptibility loci identified by GWAS. Eight SNPs were selected and genotyped in 875 CRC cases and 855 controls and replicated in an independent case-control study consisting of 768 CRC cases and 768 controls. Analyses showed that CG and GG genotypes of the rs2147578 were significantly associated with increased risk for CRC occurrence in both case-control studies [combined analysis OR = 1.29; 95% confidence interval (CI) = 1.11-1.51, P = 0.001] compared to the rs2147578 CC genotype. Bioinformatics analyses showed that rs2147578 is located in the transcript of lnc-LAMC2-1:1 and could influence the binding of lnc-LAMC2-1:1/miR-128-3p. Further luciferase reporter assays demonstrated that the construct with the risk rs2147578G allele had relatively high expression activity compared with that of the rs2147578C allele. Expression quantitative trait loci analyses also showed that rs2147578 is correlated with the expression of a well established oncogene LAMC2 (laminin subunit gamma 2). These findings indicated that rs2147578 in lnc-LAMC2-1:1 might be a genetic modifier for the development of CRC.

69 citations


Journal ArticleDOI
TL;DR: CYR61 is identified as a TGF-β-induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and it is suggested that targeting CYR61 may improve chemotherapy response inPDAC patients.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Although low expression of the nucleoside transporters hENT1 and hCNT3 that mediate cellular uptake of gemcitabine has been linked to gemcitabine resistance, the mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. Here, we report that the matricellular protein cysteine-rich angiogenic inducer 61 (CYR61) negatively regulates the nucleoside transporters hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 increased expression of hENT1 and hCNT3, increased cellular uptake of gemcitabine and sensitized PDAC cells to gemcitabine-induced apoptosis. In PDAC patient samples, expression of hENT1 and hCNT3 negatively correlates with expression of CYR61 . We demonstrate that stromal pancreatic stellate cells (PSCs) are a source of CYR61 within the PDAC tumor microenvironment. Transforming growth factor-β (TGF-β) induces the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad2/3 signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in PDAC cells in an in vitro co-culture assay. Our results identify CYR61 as a TGF-β-induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.

Journal ArticleDOI
TL;DR: It is shown that transcriptional downregulation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in metastatic HNSCC cells causes a loss of TLR3-mediated NF-κB signaling, resulting in enhanced apoptosis.
Abstract: Head and neck squamous cell carcinoma (HNSCC) is a devastating disease for which new treatments, such as immunotherapy are needed. Synthetic double-stranded RNAs, which activate toll-like receptor 3 (TLR3), have been used as potent adjuvants in cancer immunotherapy by triggering a proapoptotic response in cancer cells. A better understanding of the mechanism of TLR3-mediated apoptosis and its potential involvement in controlling tumor metastasis could lead to improvements in current treatment. Using paired, autologous primary and metastatic HNSCC cells we previously showed that metastatic, but not primary tumor-derived cells, were unable to activate prosurvival NF-κB in response to p(I):p(C) resulting in an enhanced apoptotic response. Here, we show that transcriptional downregulation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in metastatic HNSCC cells causes a loss of TLR3-mediated NF-κB signaling, resulting in enhanced apoptosis. Loss of RIPK1 strongly correlates with metastatic disease in a cohort of HNSCC patients. This downregulation of RIPK1 is possibly mediated by enhanced methylation of the RIPK1 promoter in tumor cells and enhances protumorigenic properties such as cell migration. The results described here establish a novel mechanism of TLR3-mediated apoptosis in metastatic cells and may create new opportunities for using double stranded RNA to target metastatic tumor cells.

Journal ArticleDOI
TL;DR: The MET oncogene is a predictive biomarker and an attractive therapeutic target for various cancers and a better understanding of the MET regulation is critical for Met-targeted therapeutics.
Abstract: The MET oncogene is a predictive biomarker and an attractive therapeutic target for various cancers. Its expression is regulated at multiple layers via various mechanisms. It is subject to epigenetic modifications, i.e. DNA methylation and histone acetylation. Hypomethylation and acetylation of the MET gene have been associated with its high expression in some cancers. Multiple transcription factors including Sp1 and Ets-1 govern its transcription. After its transcription, METmRNA is spliced into multiple species in the nucleus before being transported to the cytoplasm where its translation is modulated by at least 30 microRNAs and translation initiation factors, e.g. eIF4E and eIF4B. METmRNA produces a single chain pro-Met protein of 170 kDa which is cleaved into α and β chains. These two chains are bound together through disulfide bonds to form a heterodimer which undergoes either N-linked or O-linked glycosylation in the Golgi apparatus before it is properly localized in the membrane. Upon interactions with its ligand, i.e. hepatocyte growth factor (HGF), the activity of Met kinase is boosted through various phosphorylation mechanisms and the Met signal is relayed to downstream pathways. The phosphorylated Met is then internalized for subsequent degradation or recycle via proteasome, lysosome or endosome pathways. Moreover, the Met expression is subject to autoregulation and activation by other EGFRs and G-protein coupled receptors. Since deregulation of the MET gene leads to cancer and other pathological conditions, a better understanding of the MET regulation is critical for Met-targeted therapeutics.

Journal ArticleDOI
TL;DR: Enhancement of various M2 effecter cytokines and angiogenic reprogramming in iNOs+ macrophage depleted tumors and their subsequent reduction by 2 Gy dose in Rip1-Tag5 transgenic mice furthermore demonstrated a critical role of peritumoral macrophages in the course of gamma irradiation mediated M1 retuning of insulinoma.
Abstract: Tumor infiltrating iNOS+ macrophages under the influence of immunosuppressive tumor microenvironment gets polarized to tumor-promoting and immunosuppressive macrophages, known as tumor-associated macrophages (TAM). Their recruitment and increased density in the plethora of tumors has been associated with poor prognosis in cancer patients. Therefore, retuning of TAM to M1 phenotype would be a key for effective immunotherapy. Radiotherapy has been a potential non-invasive strategy to improve cancer immunotherapy and tumor immune rejection. Irradiation of late-stage tumor-bearing Rip1-Tag5 mice twice with 2 Gy dose resulted in profound changes in the inflammatory tumor micromilieu, characterized by induction of M1-associated effecter cytokines as well as reduction in protumorigenic and M2-associated effecter cytokines. Similarly, in vitro irradiation of macrophages with 2 Gy dose-induced expression of iNOS, NO, NFκBpp65, pSTAT3 and proinflammatory cytokines secretion while downregulating p38MAPK which are involved in iNOS translation and acquisition of an M1-like phenotype. Enhancement of various M2 effecter cytokines and angiogenic reprogramming in iNOs+ macrophage depleted tumors and their subsequent reduction by 2 Gy dose in Rip1-Tag5 transgenic mice furthermore demonstrated a critical role of peritumoral macrophages in the course of gamma irradiation mediated M1 retuning of insulinoma.

Journal ArticleDOI
TL;DR: Findings strongly suggest that the functional SNP located at TFBSs, rs6695837 might contribute to CRC susceptibility, and the exact biological mechanism awaits further research.
Abstract: Genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) susceptibility. However, the elucidation of causal SNPs and the biological mechanisms behind are still limited. In this study, we initially performed systematic bioinformatics analyses on CRC GWAS-identified loci to seek for potential functional SNPs located at transcription factor binding sites (TFBSs), and then a two-stage case-control study comprised of 1353 cases and 1448 controls of Chinese populations and functional analyses were conducted. As a result, only one SNP rs6695837 out of the nine candidate SNPs survived after two-stage analyses by Bonferroni correction. In combined analyses, rs6695837 exhibited significant associations with CRC risk (TT: CC, odds ratio (OR) = 1.31, 95% confidence interval (CI) = 1.06-1.63; dominant model, OR = 1.21, 95% CI = 1.03-1.43; additive model, OR = 1.15, 95% CI = 1.03-1.28). Functional annotations by RegulomeDB and rSNPBase indicated its biological role and dual-luciferase reporter assays revealed a significant increase in luciferase expression for the reconstructed plasmid with rs6695837T allele, compared with the one with C allele (PSW480 = 0.0002, PLovo = 0.0003). Further gene expression analyses demonstrated significantly higher expression of LAMC1 gene in CRC tumor tissues than that in adjacent non-cancerous tissues (P = 0.0004). These findings strongly suggest that the functional SNP located at TFBSs, rs6695837 might contribute to CRC susceptibility, and the exact biological mechanism awaits further research.

Journal ArticleDOI
TL;DR: In this paper, the authors performed whole-exome analysis on four cases of cholangiocarcinoma among the printing workers and found that an average of 44.8 somatic mutations were detected per Mb in the genome of the workers of a printing company in Osaka, Japan.
Abstract: Cholangiocarcinoma is a relatively rare cancer, but its incidence is increasing worldwide. Although several risk factors have been suggested, the etiology and pathogenesis of the majority of cholangiocarcinomas remain unclear. Recently, a high incidence of early-onset cholangiocarcinoma was reported among the workers of a printing company in Osaka, Japan. These workers underwent high exposure to organic solvents, mainly haloalkanes such as 1,2-dichloropropane (1,2-DCP) and/or dichloromethane. We performed whole-exome analysis on four cases of cholangiocarcinoma among the printing workers. An average of 44.8 somatic mutations was detected per Mb in the genome of the printing workers' cholangiocarcinoma tissues, approximately 30-fold higher than that found in control common cholangiocarcinoma tissues. Furthermore, C:G-to-T:A transitions with substantial strand bias as well as unique trinucleotide mutational changes of GpCpY to GpTpY and NpCpY to NpTpY or NpApY were predominant in all of the printing workers' cholangiocarcinoma genomes. These results were consistent with the epidemiological observation that they had been exposed to high concentrations of chemical compounds. Whole-genome analysis of Salmonella typhimurium strain TA100 exposed to 1,2-DCP revealed a partial recapitulation of the mutational signature in the printing workers' cholangiocarcinoma. Although our results provide mutational signatures unique to occupational cholangiocarcinoma, the underlying mechanisms of the disease should be further investigated by using appropriate model systems and by comparison with genomic data from other cancers.

Journal ArticleDOI
TL;DR: The mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment are reviewed, and the consequences for the efficacy and plasticity of invasion programs and metastasis are reviewed.
Abstract: Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.

Journal ArticleDOI
TL;DR: Surprisingly, NRF2, a transcription factor that was initially thought to protect the liver from oxidative stress, was found to play a key role in promoting HCC pathogenesis.
Abstract: The liver is a key metabolic organ that is essential for production of blood proteins, lipid and sugar metabolism and detoxification of naturally occurring and foreign harmful chemicals. To maintain its mass and many essential functions, the liver possesses remarkable regenerative capacity, but the latter also renders it highly susceptible to carcinogenesis. In fact, liver cancer often develops in the context of chronic liver injury. Currently, primary liver cancer is the second leading cause of cancer-related deaths, and as the rates of other cancers have been declining, the incidence of liver cancer continues to rise with an alarming rate. Although much remains to be accomplished in regards to liver cancer therapy, we have learned a great deal about the molecular etiology of the most common form of primary liver cancer, hepatocellular carcinoma (HCC). Much of this knowledge has been obtained from studies of mouse models, using either toxic chemicals, a combination of fatty foods and endoplasmic reticulum stress or chronic activation of specific metabolic pathways. Surprisingly, NRF2, a transcription factor that was initially thought to protect the liver from oxidative stress, was found to play a key role in promoting HCC pathogenesis.

Journal ArticleDOI
TL;DR: Genetic predisposition to longer LTL is a newly identified risk factor for neuroblastoma and potentially for other cancers of childhood, and a weighted linear combination of the eight LTL-associated SNPs are observed.
Abstract: Aberrant telomere lengthening is an important feature of cancer cells in adults and children. In addition to somatic mutations, germline polymorphisms in telomere maintenance genes impact telomere length. Whether these telomere-associated polymorphisms affect risk of childhood malignancies remains largely unexplored. We collected genome-wide data from three groups with pediatric malignancies [neuroblastoma (N = 1516), acute lymphoblastic leukemia (ALL) (N = 958) and osteosarcoma (N = 660)] and three control populations (N = 6892). Using case-control comparisons, we analyzed eight single nucleotide polymorphisms (SNPs) in genes definitively associated with interindividual variation in leukocyte telomere length (LTL) in prior genome-wide association studies: ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, ZNF208 and RTEL1 Six of these SNPs were associated (P < 0.05) with neuroblastoma risk, one with leukemia risk and one with osteosarcoma risk. The allele associated with longer LTL increased cancer risk for all these significantly associated SNPs. Using a weighted linear combination of the eight LTL-associated SNPs, we observed that neuroblastoma patients were predisposed to longer LTL than controls, with each standard deviation increase in genotypically estimated LTL associated with a 1.15-fold increased odds of neuroblastoma (95%CI = 1.09-1.22; P = 7.9×10(-7)). This effect was more pronounced in adolescent-onset neuroblastoma patients (OR = 1.46; 95%CI = 1.03-2.08). A one standard deviation increase in genotypically estimated LTL was more weakly associated with osteosarcoma risk (OR = 1.10; 95%CI = 1.01-1.19; P = 0.017) and leukemia risk (OR = 1.07; 95%CI = 1.00-1.14; P = 0.044), specifically for leukemia patients who relapsed (OR = 1.19; 95%CI = 1.01-1.40; P = 0.043). These results indicate that genetic predisposition to longer LTL is a newly identified risk factor for neuroblastoma and potentially for other cancers of childhood.

Journal ArticleDOI
TL;DR: LCN2 overexpression may be a novel OSCC treatment strategy and a useful biomarker for predicting OSCC progression by targeting the transcriptional and post-transcriptional regulation of CAIX in OSCC cells.
Abstract: Our study elucidated the clinical and prognostic significance of LCN2 in OSCC among the Taiwanese population. Moreover, we observed that LCN2 suppresses cell motility by downregulating CAIX protein level via HIF-1 alpha-mediated transcriptional regulation and miR-4505-mediated post-transcriptional regulation.Lipocalin 2 (LCN2), a secreted glycoprotein, is up- or downregulated in different human cancers. At present, the functional role of LCN2 in the progression of oral squamous cell carcinoma (OSCC), which accounts for most head and neck cancers, remains poorly understood, particularly with respect to its involvement in invasion and metastasis. In this study, we observed that LCN2 expression decreased in patients with OSCC and lymph node metastasis compared with that in patients without metastasis. A higher LCN2 expression correlated with the survival of patients with OSCC. Furthermore, LCN2 overexpression in OSCC cells reduced in vitro migration and invasion and in vivo metastasis, whereas its silencing induced an increase in cell motility. Mechanistically, LCN2 inhibited the cell motility of OSCC cells through hypoxia-inducible factor (HIF)-1 alpha-dependent transcriptional inhibition of the carbonic anhydrase IX (CAIX). CAIX overexpression relieved the migration inhibition imposed by LCN2 overexpression in OSCC cells. Moreover, a microRNA (miR) analysis revealed that LCN2 can suppress CAIX expression and cell migration through miR-4505 induction. Examination of tumour tissues from patients with OSCC and OSCC-transplanted mice revealed an inverse correlation between LCN2 and CAIX expression. Furthermore, patients with LCN2(strong)/CAIX(weak) revealed the lowest frequency of lymph node metastasis and the longest survival. Our findings suggest that LCN2 suppresses tumour metastasis by targeting the transcriptional and post-transcriptional regulation of CAIX in OSCC cells. LCN2 overexpression may be a novel OSCC treatment strategy and a useful biomarker for predicting OSCC progression.

Journal ArticleDOI
TL;DR: In vitro and in vivo experiments indicate that restoring miR-124 expression in NSCLC cells had a marked effect on reducing cell migration, invasion and metastasis, and show for the first time that the feedback loop between mi R-124 and TGF-β pathway may play a significant role inNSCLC metastasis.
Abstract: Increasing evidence shows that micro RNAs (miRNAs) play a critical role in tumor development. However, the role of miRNAs in non-small cell lung cancer (NSCLC) metastasis remains largely unknown. Here, we found that miR-124 expression was significantly impaired in NSCLC tissues and associated with its metastasis. In vitro and in vivo experiments indicate that restoring miR-124 expression in NSCLC cells had a marked effect on reducing cell migration, invasion and metastasis. Mechanistic analyses show that Smad4, a cobinding protein in transforming growth factor-β (TGF-β) pathway, was identified as a new target gene of miR-124. Restoring Smad4 expression in miR-124-infected cells could partially rescue miR-124-induced abolition of cell migration and invasion. Notably, upon TGF-β stimulation, phosphorylation of Smad2/3 was modulated by alteration of miR-124 or Smad4 expression, followed by inducing some special transcription of downstream genes including Snail, Slug and ZEB2, all of which may trigger epithelial-mesenchymal transition and be associated with NSCLC metastasis. Moreover, activation of TGF-β pathway may enhance expression of DNMT3a, leading to hypermethylation on miR-124 promoter. Therefore, heavily loss of miR-124 expression further enhances Smad4 level by this feedback loop. Taken together, our data show for the first time that the feedback loop between miR-124 and TGF-β pathway may play a significant role in NSCLC metastasis. Targeting the loop may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for NSCLC.

Journal ArticleDOI
TL;DR: It is shown that ectopic expression of HMGA2 significantly enhanced cell migration and invasion in vitro and promoted tumor growth and distant metastasis in vivo and the possibility of targetingHMGA2 and IL11 for treating CRC patients with metastasis is highlighted.
Abstract: Colorectal cancer (CRC) is the second leading cause of cancer deaths worldwide, and metastasis is the principle reason for its poor prognosis. Overexpression of high-mobility gene group A2 (HMGA2) contributes to the aggressiveness of CRC. However, the underlying molecular mechanism of its overexpression is still elusive. In this study, we showed that ectopic expression of HMGA2 significantly enhanced cell migration and invasion in vitro and promoted tumor growth and distant metastasis in vivo In contrast, the silencing of HMGA2 produced the opposite effects in vitro and in vivo Chromatin immunoprecipitation-PCR and luciferase assays revealed that HMGA2 bound directly to the promoters of FN1 and IL11 and significantly induced their transcriptional activities. Moreover, as the direct downstream target of HMGA2, IL11 modulated cell migration and invasion through a pSTAT3-dependent signaling pathway. Furthermore, a strong positive correlation between HMGA2 and IL11 expression was identified in 122 CRC tissues. High IL11 expression was associated with poor differentiation, a large tumor size, lymph node metastasis and low overall survival in CRC patients. Collectively, our data reveal novel insights into the molecular mechanisms underlying HMGA2-mediated CRC metastasis and highlight the possibility of targeting HMGA2 and IL11 for treating CRC patients with metastasis.

Journal ArticleDOI
TL;DR: These findings provide the first evidence that NHE1 function plays an important role in glioma-microglia interactions, enhancingglioma proliferation and invasion by stimulating microglial release of soluble factors.
Abstract: Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na(+)/H(+) exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia-glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1(+) microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-β, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma-microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation.

Journal ArticleDOI
TL;DR: Several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer are summarized.
Abstract: The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and β-catenin. In the current review, we summarize several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.

Journal ArticleDOI
TL;DR: Functional analysis showed that knockdown of endogenous JMJD6 in OSCC strongly suppressed self-renewal capacity, a key characteristic of CSCs, and anchorage-independent growth, and inhibition of JMJD 6 may offer an effective therapeutic modality against oral cancer.
Abstract: Cancer stem cells (CSCs) are defined as a small subpopulation of cancer cells within a tumor and responsible for initiation and maintenance of tumor growth. Thus, understanding of molecular regulators of CSCs is of paramount importance for the development of effective cancer therapies. Here, we identified jumonji domain-containing protein 6 (JMJD6) as a novel molecular regulator of oral CSCs. JMJD6 is highly expressed in CSC-enriched populations of human oral squamous cell carcinoma (OSCC) cell lines. Moreover, immunohistochemical staining revealed significantly high level of JMJD6 in OSCC tissues compared to normal human oral epithelia, suggesting that expression of JMJD6 positively correlates with oral carcinogenesis. Subsequent functional analysis showed that knockdown of endogenous JMJD6 in OSCC strongly suppressed self-renewal capacity, a key characteristic of CSCs, and anchorage-independent growth. Conversely, ectopic expression of JMJD6 enhanced CSC characteristics including self-renewal, ALDH1 activity, migration/invasion and drug resistance. Expression of CSC-related genes was also markedly affected by modulating JMJD6 expression. Mechanistically, JMJD6 induces interleukin 4 (IL4) transcription by binding to its promoter region. IL4 rescues self-renewal capacity in JMJD6- knocked down OSCC cells, suggesting the importance of JMJD6-IL4 axis in oral CSCs. Our studies identify JMJD6 as a molecular determinant of CSC phenotype, suggesting that inhibition of JMJD6 may offer an effective therapeutic modality against oral cancer.

Journal ArticleDOI
TL;DR: The fibroblast growth factor receptor 2 (FGFR2) locus is the ‘top hit’ in genome-wide association studies for breast cancer and a mechanism for FGFR2 risk single-nucleotide polymorphism function is proposed.
Abstract: The fibroblast growth factor receptor 2 (FGFR2) locus is consistently the top hit in genome-wide association studies for oestrogen receptor-positive (ER(+)) breast cancer. Yet, its mode of action continues to be controversial. Here, we employ a systems biology approach to demonstrate that signalling via FGFR2 counteracts cell activation by oestrogen. In the presence of oestrogen, the oestrogen receptor (ESR1) regulon (set of ESR1 target genes) is in an active state. However, signalling by FGFR2 is able to reverse the activity of the ESR1 regulon. This effect is seen in multiple distinct FGFR2 signalling model systems, across multiple cells lines and is dependent on the presence of FGFR2. Increased oestrogen exposure has long been associated with an increased risk of breast cancer. We therefore hypothesized that risk variants should reduce FGFR2 expression and subsequent signalling. Indeed, transient transfection experiments assaying the three independent variants of the FGFR2 risk locus (rs2981578, rs35054928 and rs45631563) in their normal chromosomal context show that these single-nucleotide polymorphisms (SNPs) map to transcriptional silencer elements and that, compared with wild type, the risk alleles augment silencer activity. The presence of risk variants results in lower FGFR2 expression and increased oestrogen responsiveness. We thus propose a molecular mechanism by which FGFR2 can confer increased breast cancer risk that is consistent with oestrogen exposure as a major driver of breast cancer risk. Our findings may have implications for the clinical use of FGFR2 inhibitors.

Journal ArticleDOI
TL;DR: Modulation of IL-32 alternative splicing could represent a novel strategy for the treatment of malignancies, in particular thyroid cancer.
Abstract: Alternative splicing is a biological mechanism that enables the synthesis of several isoforms with different or even opposite functions. This process must be tightly regulated to prevent unwanted isoform expression favoring pathological processes. Some isoforms of interleukin 32 (IL-32) are reported to be more potent in inducing inflammation, however the role in cell death remains to be investigated. This study demonstrates that IL-32γ and IL-32β can induce caspase-8-dependent cell death whereas this was not observed for IL-32α. Overexpression of IL-32β or IL-32γ but not IL-32α, resulted in enhanced expression of the survival cytokine IL-8. Furthermore, restoring the IL-8 signaling pathway by overexpressing CXCR1 in HEK293 cells, rescued IL-32β but not IL-32γ-induced cell death. Interestingly, IL-32γ was able to downregulate CXCR1 and thereby induce cell death. Subsequent studies into the role of IL-32 in thyroid cancer (TC) revealed that several IL-32 isoforms, IL-8, and CXCR1 are expressed in TC cell lines and specimens. Remarkably, TC cell lines were found to produce high concentrations of IL-8, indicating an important role for IL-8 in the survival-signaling pathway in these cells. Intriguingly, a significant correlation between the IL-8 receptor CXCR1 and IL-32γ was observed in TC specimens, while this was not observed for the other IL-32 splice variants. Blocking IL-32 alternative splicing by Isoginkgetin resulted in predominant expression of IL-32γ splice variants and cell death in TC cell lines. All together, modulation of IL-32 alternative splicing could represent a novel strategy for the treatment of malignancies, in particular thyroid cancer.

Journal ArticleDOI
TL;DR: It is suggested that a proinflammatory diet may act as cofactor with cigarette smoking and diabetes to increase risk of PC beyond the risk of any of these factors alone.
Abstract: Epidemiologic studies show strong associations between pancreatic cancer (PC) and inflammatory stimuli or conditions such as cigarette smoking and diabetes, suggesting that inflammation may play a key role in PC. Studies of dietary patterns and cancer outcomes also suggest that diet might influence an individual's risk of PC by modulating inflammation. We therefore examined independent and joint associations between inflammatory potential of diet, cigarette smoking and long-standing (≥5 years) type II diabetes in relation to risk of PC. Analyses included data from 817 cases and 1756 controls. Inflammatory potential of diet was measured using the dietary inflammatory index (DII), calculated from dietary intake assessed via a 144-item food frequency questionnaire, and adjusted for energy intake. Information on smoking and diabetes were obtained via risk factor questionnaires. Associations were examined using multivariable-adjusted logistic regression. Higher DII scores, reflecting a more proinflammatory diet, were associated with increased risk of PC [odds ratio (OR)Quintile 5 versus 1 = 2.54, 95% confidence interval (CI) = 1.87-3.46, P trend < 0.0001]. Excess risk of PC also was observed among former (OR = 1.29, 95% CI = 1.07-1.54) and current (OR = 3.40, 95% CI = 2.28-5.07) smokers compared with never smokers, and among participants with long-standing diabetes (OR = 3.09, 95% CI = 2.02-4.72) compared with nondiabetics. Joint associations were observed for the combined effects of having greater than median DII score, and being a current smoker (OR = 4.79, 95% CI = 3.00-7.65) or having long-standing diabetes (OR = 6.03, 95% CI = 3.41-10.85). These findings suggest that a proinflammatory diet may act as cofactor with cigarette smoking and diabetes to increase risk of PC beyond the risk of any of these factors alone.

Journal ArticleDOI
TL;DR: It was found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels, and CYP 2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001).
Abstract: Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.

Journal ArticleDOI
TL;DR: Genes aberrantly methylated suggest a mechanism that could lead to genomic instability and chromothripsis and a CpG island methylator phenotype-like subtype with potentially worse clinical outcome was identified.
Abstract: The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival.