scispace - formally typeset
Search or ask a question

Showing papers by "Ying Hu published in 2019"


Journal ArticleDOI
Carol J. Peden1, Tim Stephens2, Graham Martin3, Brennan C Kahan2  +557 moreInstitutions (8)
TL;DR: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery, and future QI programmes should ensure that teams have both the time and resources needed to improve patient care.

127 citations


Journal ArticleDOI
TL;DR: The data corroborate the role of MSTO1 as a mitochondrial fusion protein and highlight a previously unrecognized link to mtDNA regulation, and provide mechanistic insight into the disease pathogenesis associated with MSTo1 mutations and further define the clinical spectrum and the natural history of M STO1-related disease.
Abstract: MSTO1 encodes a cytosolic mitochondrial fusion protein, misato homolog 1 or MSTO1. While the full genotype-phenotype spectrum remains to be explored, pathogenic variants in MSTO1 have recently been reported in a small number of patients presenting with a phenotype of cerebellar ataxia, congenital muscle involvement with histologic findings ranging from myopathic to dystrophic and pigmentary retinopathy. The proposed underlying pathogenic mechanism of MSTO1-related disease is suggestive of impaired mitochondrial fusion secondary to a loss of function of MSTO1. Disorders of mitochondrial fusion and fission have been shown to also lead to mitochondrial DNA (mtDNA) depletion, linking them to the mtDNA depletion syndromes, a clinically and genetically diverse class of mitochondrial diseases characterized by a reduction of cellular mtDNA content. However, the consequences of pathogenic variants in MSTO1 on mtDNA maintenance remain poorly understood. We present extensive phenotypic and genetic data from 12 independent families, including 15 new patients harbouring a broad array of bi-allelic MSTO1 pathogenic variants, and we provide functional characterization from seven MSTO1-related disease patient fibroblasts. Bi-allelic loss-of-function variants in MSTO1 manifest clinically with a remarkably consistent phenotype of childhood-onset muscular dystrophy, corticospinal tract dysfunction and early-onset non-progressive cerebellar atrophy. MSTO1 protein was not detectable in the cultured fibroblasts of all seven patients evaluated, suggesting that pathogenic variants result in a loss of protein expression and/or affect protein stability. Consistent with impaired mitochondrial fusion, mitochondrial networks in fibroblasts were found to be fragmented. Furthermore, all fibroblasts were found to have depletion of mtDNA ranging from 30 to 70% along with alterations to mtDNA nucleoids. Our data corroborate the role of MSTO1 as a mitochondrial fusion protein and highlight a previously unrecognized link to mtDNA regulation. As impaired mitochondrial fusion is a recognized cause of mtDNA depletion syndromes, this novel link to mtDNA depletion in patient fibroblasts suggests that MSTO1-deficiency should also be considered a mtDNA depletion syndrome. Thus, we provide mechanistic insight into the disease pathogenesis associated with MSTO1 mutations and further define the clinical spectrum and the natural history of MSTO1-related disease.

33 citations


Journal ArticleDOI
TL;DR: A deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy, inserts an in-frame pseudoexon into COL6 a1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression.
Abstract: The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.

27 citations


Journal ArticleDOI
TL;DR: It is shown that mutations in FXR1 exon 15, which is alternatively spliced in muscle, cause multi-minicore myopathy in humans and in mouse models.
Abstract: FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.

23 citations


Journal ArticleDOI
TL;DR: To characterize the natural history and clinical features of myopathies caused by mono‐allelic, dominantly acting pathogenic variants in COL12A1, the aim is to establish a database of these diseases and establish a causal relationship between these variants and disease progression.
Abstract: Objective To characterize the natural history and clinical features of myopathies caused by mono-allelic, dominantly acting pathogenic variants in COL12A1. Methods Patients with dominant COL12A1-related myopathies were characterized by history and clinical examination, muscle imaging, and genetic analysis. Pathogenicity of the variants was assessed by immunostaining patient-derived dermal fibroblast cultures for collagen XII. Results Four independent families with childhood-onset weakness due to novel, dominantly acting pathogenic variants in COL12A1 were identified. Adult patients exhibited distal-predominant weakness. Three families carried dominantly acting glycine missense variants, and one family had a heterozygous, intragenic, in-frame deletion of exon 52 of COL12A1. All pathogenic variants resulted in increased intracellular retention of collagen XII in patient-derived fibroblasts as well as loss of extracellular, fibrillar collagen XII deposition. Since haploinsufficiency for COL12A1 is largely clinically asymptomatic, we designed and evaluated small interfering RNAs (siRNAs) that specifically target the mutant allele containing the exon 52 deletion. Immunostaining of the patient fibroblasts treated with the siRNA showed a near complete correction of collagen XII staining patterns. Interpretation This study characterizes a distal myopathy phenotype in adults with dominant COL12A1 pathogenic variants, further defining the phenotypic spectrum and natural history of COL12A1-related myopathies. This work also provides proof of concept of a precision medicine treatment approach by proposing and validating allele-specific knockdown using siRNAs specifically designed to target a patient's dominant COL12A1 disease allele.

22 citations


Journal ArticleDOI
TL;DR: Both anaemia and poor functional capacity are associated with postoperative complications and may therefore be modifiable targets for preoperative optimisation.
Abstract: Background Preoperative anaemia is associated with elevated risks of postoperative complications. This association may be explained by confounding related to poor cardiopulmonary fitness. We conducted a pre-specified substudy of the Measurement of Exercise Tolerance before Surgery (METS) study to examine the associations of preoperative haemoglobin concentration with preoperative cardiopulmonary exercise testing performance (peak oxygen consumption, anaerobic threshold) and postoperative complications. Methods The substudy included a nested cross-sectional analysis and nested cohort analysis. In the cross-sectional study (1279 participants), multivariate linear regression modelling was used to determine the adjusted association of haemoglobin concentration with peak oxygen consumption and anaerobic threshold. In the nested cohort study (1256 participants), multivariable logistic regression modelling was used to determine the adjusted association of haemoglobin concentration, peak oxygen consumption, and anaerobic threshold with the primary endpoint (composite outcome of death, cardiovascular complications, acute kidney injury, or surgical site infection) and secondary endpoint (moderate or severe complications). Results Haemoglobin concentration explained 3.8% of the variation in peak oxygen consumption and anaerobic threshold (P Conclusion Haemoglobin concentration explains a small proportion of variation in exercise capacity. Both anaemia and poor functional capacity are associated with postoperative complications and may therefore be modifiable targets for preoperative optimisation.

15 citations


Journal ArticleDOI
TL;DR: Deep intronic mutations in CAPN3 may be pathogenic and should be considered in the appropriate clinical setting, and designed phosophorodiamidate morpholino oligomers as splice modulators to block the new splice acceptor site and prevented the aberrant splicing.
Abstract: Calpainopathy, also known as limb girdle muscular dystrophy (LGMD) type 2A (LGMD2A) or LGMD R1 Calpain3-related, is one of the most common genetically characterized forms of limb-girdle muscular dystrophy with a wide range of phenotypic severity. We evaluated a consanguineous family with a clinical phenotype consistent with calpainopathy in whom conventional sequencing did not detect any mutations in the CAPN3 gene. Using whole exome sequencing paired with haplotype analysis, we identified a homozygous deep intronic single base pair deletion in CAPN3 (c.946-29delT). Familial segregation studies were consistent with recessive inheritance. Immunoblotting of muscle tissue from the patient showed complete absence of calpain 3. In silico analysis predicted the deletion to disrupt the branch point and subsequently alter splicing of exon 7. Studies of patient fibroblasts and muscle tissue confirmed altered splicing, resulting in an inclusion of a 389-bp intronic sequence upstream of exon 7, originating from a cryptic splice acceptor site in intron 6. This out-of-frame insertion results in a premature stop codon, leading to an apparent absence of protein likely due to degradation of the transcript via nonsense-mediated decay. We then designed phosphorodiamidate morpholino oligomers (PMOs) as splice modulators to block the new splice acceptor site. This approach successfully prevented the aberrant splicing - reverting the majority of the splice to the wildtype transcript. These results confirm the pathogenicity of this novel deep intronic mutation and provide a mutation-specific therapeutic strategy. Thus, deep intronic mutations in CAPN3 may be pathogenic and should be considered in the appropriate clinical setting. The identification of mutations which may be missed by traditional Sanger sequencing is essential as they may be excellent targets for individualized therapeutic strategies using RNA-directed splice modulation.

6 citations