scispace - formally typeset
Search or ask a question

Showing papers by "Yoshua Bengio published in 2017"


Journal ArticleDOI
TL;DR: A fast and accurate fully automatic method for brain tumor segmentation which is competitive both in terms of accuracy and speed compared to the state of the art, and introduces a novel cascaded architecture that allows the system to more accurately model local label dependencies.

2,538 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: In this article, the authors extend DenseNets to semantic segmentation and achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining.
Abstract: State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.,,,,,, Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.,,,,,, In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.

1,163 citations


Proceedings Article
06 Aug 2017
TL;DR: The analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
Abstract: We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.

1,080 citations


Posted Content
TL;DR: Graph Attention Networks (GATs) as discussed by the authors leverage masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations.
Abstract: We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).

1,016 citations


Journal Article
TL;DR: In this paper, a method to train quantized neural networks (QNNs) with extremely low precision (e.g., 1-bit) weights and activations, at run-time is introduced.
Abstract: We introduce a method to train Quantized Neural Networks (QNNs) -- neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At traintime the quantized weights and activations are used for computing the parameter gradients. During the forward pass, QNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations. As a result, power consumption is expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves 51% top-1 accuracy. Moreover, we quantize the parameter gradients to 6-bits as well which enables gradients computation using only bit-wise operation. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not least, we programmed a binary matrix multiplication GPU kernel with which it is possible to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The QNN code is available online.

919 citations


Posted Content
TL;DR: This paper proposed a self-attention mechanism and a special regularization term for the model, which achieved a significant performance gain compared to other sentence embedding methods in all of the three tasks.
Abstract: This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification, and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.

767 citations


Proceedings Article
09 Mar 2017
TL;DR: A new model for extracting an interpretable sentence embedding by introducing self-attention is proposed, which uses a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence.
Abstract: This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification, and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.

724 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper introduces an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions than previous generative models, and does so for all 1000 ImageNet categories.
Abstract: Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. [37] showed one interesting way to synthesize novel images by performing gradient ascent in the latent space of a generator network to maximize the activations of one or multiple neurons in a separate classifier network. In this paper we extend this method by introducing an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions (227 × 227) than previous generative models, and does so for all 1000 ImageNet categories. In addition, we provide a unified probabilistic interpretation of related activation maximization methods and call the general class of models Plug and Play Generative Networks. PPGNs are composed of 1) a generator network G that is capable of drawing a wide range of image types and 2) a replaceable condition network C that tells the generator what to draw. We demonstrate the generation of images conditioned on a class (when C is an ImageNet or MIT Places classification network) and also conditioned on a caption (when C is an image captioning network). Our method also improves the state of the art of Multifaceted Feature Visualization [40], which generates the set of synthetic inputs that activate a neuron in order to better understand how deep neural networks operate. Finally, we show that our model performs reasonably well at the task of image inpainting. While image models are used in this paper, the approach is modality-agnostic and can be applied to many types of data.

689 citations


Proceedings Article
17 Feb 2017
TL;DR: Char2Wav is an end-to-end model for speech synthesis that learns to produce audio directly from text and is a bidirectional recurrent neural network with attention that produces vocoder acoustic features.
Abstract: We present Char2Wav, an end-to-end model for speech synthesis. Char2Wav has two components: a reader and a neural vocoder. The reader is an encoderdecoder model with attention. The encoder is a bidirectional recurrent neural network that accepts text or phonemes as inputs, while the decoder is a recurrent neural network (RNN) with attention that produces vocoder acoustic features. Neural vocoder refers to a conditional extension of SampleRNN which generates raw waveform samples from intermediate representations. Unlike traditional models for speech synthesis, Char2Wav learns to produce audio directly from text.

412 citations


Posted Content
TL;DR: Through this analysis, it is found that three factors – learning rate, batch size and the variance of the loss gradients – control the trade-off between the depth and width of the minima found by SGD, with wider minima favoured by a higher ratio of learning rate to batch size.
Abstract: We investigate the dynamical and convergent properties of stochastic gradient descent (SGD) applied to Deep Neural Networks (DNNs). Characterizing the relation between learning rate, batch size and the properties of the final minima, such as width or generalization, remains an open question. In order to tackle this problem we investigate the previously proposed approximation of SGD by a stochastic differential equation (SDE). We theoretically argue that three factors - learning rate, batch size and gradient covariance - influence the minima found by SGD. In particular we find that the ratio of learning rate to batch size is a key determinant of SGD dynamics and of the width of the final minima, and that higher values of the ratio lead to wider minima and often better generalization. We confirm these findings experimentally. Further, we include experiments which show that learning rate schedules can be replaced with batch size schedules and that the ratio of learning rate to batch size is an important factor influencing the memorization process.

386 citations


Posted Content
TL;DR: This work relies on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and uses them in experiments with end-to-end training schemes and demonstrates that such complex- valued models are competitive with their real-valued counterparts.
Abstract: At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks.

Posted Content
TL;DR: It is argued that most notions of flatness are problematic for deep models and can not be directly applied to explain generalization, and when focusing on deep networks with rectifier units, the particular geometry of parameter space induced by the inherent symmetries that these architectures exhibit is exploited.
Abstract: Despite their overwhelming capacity to overfit, deep learning architectures tend to generalize relatively well to unseen data, allowing them to be deployed in practice. However, explaining why this is the case is still an open area of research. One standing hypothesis that is gaining popularity, e.g. Hochreiter & Schmidhuber (1997); Keskar et al. (2017), is that the flatness of minima of the loss function found by stochastic gradient based methods results in good generalization. This paper argues that most notions of flatness are problematic for deep models and can not be directly applied to explain generalization. Specifically, when focusing on deep networks with rectifier units, we can exploit the particular geometry of parameter space induced by the inherent symmetries that these architectures exhibit to build equivalent models corresponding to arbitrarily sharper minima. Furthermore, if we allow to reparametrize a function, the geometry of its parameters can change drastically without affecting its generalization properties.

Proceedings Article
06 Aug 2017
TL;DR: The authors argue that most notions of flatness are problematic for deep models and can not be directly applied to explain generalization, and exploit the particular geometry of parameter space induced by the inherent symmetries that these architectures exhibit to build equivalent models corresponding to arbitrarily sharper minima.
Abstract: Despite their overwhelming capacity to overfit, deep learning architectures tend to generalize relatively well to unseen data, allowing them to be deployed in practice. However, explaining why this is the case is still an open area of research. One standing hypothesis that is gaining popularity, e.g. Hochreiter & Schmidhuber (1997); Keskar et al. (2017), is that the flatness of minima of the loss function found by stochastic gradient based methods results in good generalization. This paper argues that most notions of flatness are problematic for deep models and can not be directly applied to explain generalization. Specifically, when focusing on deep networks with rectifier units, we can exploit the particular geometry of parameter space induced by the inherent symmetries that these architectures exhibit to build equivalent models corresponding to arbitrarily sharper minima. Furthermore, if we allow to reparametrize a function, the geometry of its parameters can change drastically without affecting its generalization properties.

Posted Content
TL;DR: The authors examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness, showing that deep networks tend to prioritize learning simple patterns first.
Abstract: We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.

Proceedings Article
27 May 2017
TL;DR: In this paper, the authors provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks, and demonstrate that such complexvalued models are competitive with their real-valued counterparts.
Abstract: At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech spectrum prediction using TIMIT. We achieve state-of-the-art performance on these audio-related tasks.

Proceedings ArticleDOI
17 Feb 2017
TL;DR: This paper presented an evaluation model (ADEM) that learns to predict human-like scores to input responses, using a new dataset of human response scores, and showed that the ADEM model's predictions correlate significantly, and at a level much higher than word-overlap metrics such as BLEU, with human judgements at both utterance and system-level.
Abstract: Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem. Unfortunately, existing automatic evaluation metrics are biased and correlate very poorly with human judgements of response quality (Liu et al., 2016). Yet having an accurate automatic evaluation procedure is crucial for dialogue research, as it allows rapid prototyping and testing of new models with fewer expensive human evaluations. In response to this challenge, we formulate automatic dialogue evaluation as a learning problem.We present an evaluation model (ADEM)that learns to predict human-like scores to input responses, using a new dataset of human response scores. We show that the ADEM model’s predictions correlate significantly, and at a level much higher than word-overlap metrics such as BLEU, with human judgements at both the utterance and system-level. We also show that ADEM can generalize to evaluating dialogue mod-els unseen during training, an important step for automatic dialogue evaluation.

Posted Content
TL;DR: Non-vacuous and numerically-tight generalization guarantees for deep learning are provided, as well as theoretical insights into why and how deep learning can generalize well, despite its large capacity, complexity, possible algorithmic instability, nonrobustness, and sharp minima.
Abstract: This paper provides theoretical insights into why and how deep learning can generalize well, despite its large capacity, complexity, possible algorithmic instability, nonrobustness, and sharp minima, responding to an open question in the literature. We also discuss approaches to provide non-vacuous generalization guarantees for deep learning. Based on theoretical observations, we propose new open problems and discuss the limitations of our results.

Posted Content
TL;DR: This paper showed that deep CNNs tend to latch onto the Fourier image statistics of the training dataset, sometimes exhibiting up to a 28% generalization gap across the various test sets.
Abstract: Deep CNNs are known to exhibit the following peculiarity: on the one hand they generalize extremely well to a test set, while on the other hand they are extremely sensitive to so-called adversarial perturbations. The extreme sensitivity of high performance CNNs to adversarial examples casts serious doubt that these networks are learning high level abstractions in the dataset. We are concerned with the following question: How can a deep CNN that does not learn any high level semantics of the dataset manage to generalize so well? The goal of this article is to measure the tendency of CNNs to learn surface statistical regularities of the dataset. To this end, we use Fourier filtering to construct datasets which share the exact same high level abstractions but exhibit qualitatively different surface statistical regularities. For the SVHN and CIFAR-10 datasets, we present two Fourier filtered variants: a low frequency variant and a randomly filtered variant. Each of the Fourier filtering schemes is tuned to preserve the recognizability of the objects. Our main finding is that CNNs exhibit a tendency to latch onto the Fourier image statistics of the training dataset, sometimes exhibiting up to a 28% generalization gap across the various test sets. Moreover, we observe that significantly increasing the depth of a network has a very marginal impact on closing the aforementioned generalization gap. Thus we provide quantitative evidence supporting the hypothesis that deep CNNs tend to learn surface statistical regularities in the dataset rather than higher-level abstract concepts.

Journal ArticleDOI
TL;DR: It is shown that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task, and it makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains.
Abstract: We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point, or stationary distribution) towards a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged towards their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal 'back-propagated' during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2 and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task.

Journal ArticleDOI
TL;DR: In this article, a new adaptation layer is proposed to reduce the mismatch between training and test data on a particular source layer, and the adaptation process can be efficiently and effectively implemented in an unsupervised manner.

Posted Content
TL;DR: This work derives a novel and low-variance GAN objective using the discriminator's output that follows corresponds to the log-likelihood, which is proved to be consistent in theory and beneficial in practice.
Abstract: Despite the successes in capturing continuous distributions, the application of generative adversarial networks (GANs) to discrete settings, like natural language tasks, is rather restricted. The fundamental reason is the difficulty of back-propagation through discrete random variables combined with the inherent instability of the GAN training objective. To address these problems, we propose Maximum-Likelihood Augmented Discrete Generative Adversarial Networks. Instead of directly optimizing the GAN objective, we derive a novel and low-variance objective using the discriminator's output that follows corresponds to the log-likelihood. Compared with the original, the new objective is proved to be consistent in theory and beneficial in practice. The experimental results on various discrete datasets demonstrate the effectiveness of the proposed approach.

Posted Content
TL;DR: MILA's MILABOT is capable of conversing with humans on popular small talk topics through both speech and text and consists of an ensemble of natural language generation and retrieval models, including template-based models, bag-of-words models, sequence-to-sequence neural network and latent variable neural network models.
Abstract: We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through both speech and text. The system consists of an ensemble of natural language generation and retrieval models, including template-based models, bag-of-words models, sequence-to-sequence neural network and latent variable neural network models. By applying reinforcement learning to crowdsourced data and real-world user interactions, the system has been trained to select an appropriate response from the models in its ensemble. The system has been evaluated through A/B testing with real-world users, where it performed significantly better than many competing systems. Due to its machine learning architecture, the system is likely to improve with additional data.

Proceedings Article
24 Apr 2017
TL;DR: An augmented training procedure for generative adversarial networks designed to address shortcomings of the original by directing the generator towards probable configurations of abstract discriminator features is proposed.
Abstract: We propose an augmented training procedure for generative adversarial networks designed to address shortcomings of the original by directing the generator towards probable configurations of abstract discriminator features. We estimate and track the distribution of these features, as computed from data, with a denoising auto-encoder, and use it to propose high-level targets for the generator. We combine this new loss with the original and evaluate the hybrid criterion on the task of unsupervised image synthesis from datasets comprising a diverse set of visual categories, noting a qualitative and quantitative improvement in the ``objectness'' of the resulting samples.

Posted Content
TL;DR: The authors presented an evaluation model that learns to predict human-like scores to input responses, using a new dataset of human response scores, and showed that the model's predictions correlate significantly, and at a level much higher than word-overlap metrics such as BLEU, with human judgements at both utterance and system-level.
Abstract: Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem. Unfortunately, existing automatic evaluation metrics are biased and correlate very poorly with human judgements of response quality. Yet having an accurate automatic evaluation procedure is crucial for dialogue research, as it allows rapid prototyping and testing of new models with fewer expensive human evaluations. In response to this challenge, we formulate automatic dialogue evaluation as a learning problem. We present an evaluation model (ADEM) that learns to predict human-like scores to input responses, using a new dataset of human response scores. We show that the ADEM model's predictions correlate significantly, and at a level much higher than word-overlap metrics such as BLEU, with human judgements at both the utterance and system-level. We also show that ADEM can generalize to evaluating dialogue models unseen during training, an important step for automatic dialogue evaluation.

Posted Content
TL;DR: A new prior is proposed for learning representations of high-level concepts of the kind the authors manipulate with language, inspired by cognitive neuroscience theories of consciousness, that makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules.
Abstract: A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.

Posted Content
TL;DR: In this paper, a simple yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully convolutional residual networks (FC-ResNets) is presented.
Abstract: In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data. In our image segmentation pipeline, we use FCNs to obtain normalized images, which are then iteratively refined by means of a FC-ResNet to generate a segmentation prediction. As in other fully convolutional approaches, our pipeline can be used off-the-shelf on different image modalities. We show that using this pipeline, we exhibit state-of-the-art performance on the challenging Electron Microscopy benchmark, when compared to other 2D methods. We improve segmentation results on CT images of liver lesions, when contrasting with standard FCN methods. Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods. The obtained results illustrate the strong potential and versatility of the pipeline by achieving highly accurate results on multi-modality images from different anatomical regions and organs.

Posted Content
TL;DR: This work introduces a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator.
Abstract: Generative adversarial networks (GANs) are a learning framework that rely on training a discriminator to estimate a measure of difference between a target and generated distributions. GANs, as normally formulated, rely on the generated samples being completely differentiable w.r.t. the generative parameters, and thus do not work for discrete data. We introduce a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator. The importance weights have a strong connection to the decision boundary of the discriminator, and we call our method boundary-seeking GANs (BGANs). We demonstrate the effectiveness of the proposed algorithm with discrete image and character-based natural language generation. In addition, the boundary-seeking objective extends to continuous data, which can be used to improve stability of training, and we demonstrate this on Celeba, Large-scale Scene Understanding (LSUN) bedrooms, and Imagenet without conditioning.

Journal ArticleDOI
TL;DR: This work combines scores from neural language model trained only on target monolingual data with neural machine translation model and fusing hidden-states of these two models, and obtains up to 2 BLEU improvement over hierarchical and phrase-based baseline on low-resource language pair, Turkish English.

Proceedings Article
15 Nov 2017
TL;DR: This work unify successful ideas from recently proposed architectures into a stochastic recurrent model that achieves state-of-the-art results on standard speech benchmarks such as TIMIT and Blizzard and competitive performance on sequential MNIST.
Abstract: Many efforts have been devoted to training generative latent variable models with autoregressive decoders, such as recurrent neural networks (RNN). Stochastic recurrent models have been successful in capturing the variability observed in natural sequential data such as speech. We unify successful ideas from recently proposed architectures into a stochastic recurrent model: each step in the sequence is associated with a latent variable that is used to condition the recurrent dynamics for future steps. Training is performed with amortised variational inference where the approximate posterior is augmented with a RNN that runs backward through the sequence. In addition to maximizing the variational lower bound, we ease training of the latent variables by adding an auxiliary cost which forces them to reconstruct the state of the backward recurrent network. This provides the latent variables with a task-independent objective that enhances the performance of the overall model. We found this strategy to perform better than alternative approaches such as KL annealing. Although being conceptually simple, our model achieves state-of-the-art results on standard speech benchmarks such as TIMIT and Blizzard and competitive performance on sequential MNIST. Finally, we apply our model to language modeling on the IMDB dataset where the auxiliary cost helps in learning interpretable latent variables.

Journal ArticleDOI
07 Dec 2017-Nature
TL;DR: Artificial intelligence can speed up research into new photovoltaic, battery and carbon-capture materials, argue Edward Sargent, Alán Aspuru-Guzikand colleagues.
Abstract: Artificial intelligence can speed up research into new photovoltaic, battery and carbon-capture materials, argue Edward Sargent, Alan Aspuru-Guzikand colleagues. Artificial intelligence can speed up research into new photovoltaic, battery and carbon-capture materials, argue Edward Sargent, Alan Aspuru-Guzikand colleagues.