scispace - formally typeset
Search or ask a question
Institution

Central University of Ecuador

EducationQuito, Ecuador
About: Central University of Ecuador is a education organization based out in Quito, Ecuador. It is known for research contribution in the topics: Population & Medicine. The organization has 2220 authors who have published 1910 publications receiving 15052 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This is the first effective protocol for rearing a hematophagous parasitic avian fly from egg to adult in the absence of a living host and it was able to rear 50 larvae to the adult stage.
Abstract: Captive rearing of insect pests is necessary to understand their biology and to develop control methods. The avian nest fly, Philornis downsi Dodge and Aitken, is a blood-sucking parasite during its larval stage and a serious threat to endemic birds in the Galapagos Islands where it is considered invasive. In order to procure large numbers of flies for biological studies, rearing media and diets were trialed for rearing the larval stage of P. downsi under controlled conditions in the absence of its avian host. P. downsi eggs were obtained from field-caught female flies, and once eggs hatched they were reared on chicken blood for the first 3 d. Following this, three diets were tested on second- and third-instar larvae: 1) chicken blood only; 2) chicken blood, hydrolyzed protein and dried milk powder; and 3) chicken blood, hydrolyzed protein and brewer’s yeast. Out of 385 P. downsi larvae tested, we were able to rear 50 larvae to the adult stage. The highest level of mortality was found in the first-instar larvae. Survivorship of second- and third-instar larvae was similar irrespective of diet and diet did not significantly influence larval or pupal development times; though larvae fed the diet with brewer’s yeast developed marginally faster. Pupal weights were similar to those of larvae that had developed on bird hosts in the field. To our knowledge, this is the first effective protocol for rearing a hematophagous parasitic avian fly from egg to adult in the absence of a living host.

28 citations

Journal ArticleDOI
TL;DR: It is shown that the closest relatives of half of the basidiolichens now found in Galapagos are from mainland Ecuador, implying that they reached the islands through the shortest route, with all species arriving on the islandsthrough independent colonization events.
Abstract: This study is a re-assessment of basidiolichen diversity in the Galapagos Islands. We present a molecular phylogenetic analysis, based on 92 specimens from Galapagos, using two nuclear ribosomal DNA markers (ITS and nuLSU). We also re-examined the morphology and anatomy of all sequenced material. The molecular results confirm our previous assessment that all Galapagos basidiolichens belong to the Dictyonema clade, which in Galapagos is represented by four genera: Acantholichen, Cora, Cyphellostereum, and Dictyonema. Most species previously reported from Galapagos in these genera were at the time believed to represent widely distributed taxa. This conclusion, however, has changed with the inclusion of molecular data. Although almost the same number of species is distinguished, the phylogenetic data now suggest that all are restricted to the Galapagos Islands. Among them, six species are proposed here as new to science, namely Cora galapagoensis, Cyphellostereum unoquinoum, Dictyonema barbatum, D. darwinianum, D. ramificans, and D. subobscuratum; and four species have already been described previously, namely Acantholichen galapagoensis, Cora santacruzensis, Dictyonema pectinatum, and D. galapagoense, here recombined as Cyphellostereum galapagoense. Our analysis is set on a very broad phylogenetic framework, which includes a large number of specimens (N = 826) mainly from Central and South America, and therefore strongly suggests an unusually high level of endemism previously not recognized. This analysis also shows that the closest relatives of half of the basidiolichens now found in Galapagos are from mainland Ecuador, implying that they reached the islands through the shortest route, with all species arriving on the islands through independent colonization events.

28 citations

Journal ArticleDOI
28 Jun 2016-PLOS ONE
TL;DR: A more comprehensive analysis of available data, from both the Ministry of Public Health and the literature, provides a very different picture, and the claim that Chagas disease is controlled seems largely inadequate and sends an equivocal message which can undermine current control efforts.
Abstract: A recent study by Cartelle Gestal et al. reported an analysis of data from the Ministry of Public Health on the epidemiological situation of neglected tropical diseases in Ecuador [1]. Based on a misleading definition of Chagas disease cases not corresponding to that of the Ministry of Public Health [2], the authors concluded that the government had mounted successful control campaigns, and as a result Chagas disease (among others) had been effectively controlled as no cases in children under age five had been reported since 2009. Ecuador is thus identified as one of the first countries to control Chagas disease. While we certainly agree that efforts have been made in terms of Chagas disease surveillance and control campaigns in Ecuador, a more comprehensive analysis of available data, from both the Ministry of Public Health and the literature, provides a very different picture, and the claim that Chagas disease is controlled made by Cartelle Gestal et al. seems largely inadequate and sends an equivocal message which can undermine current control efforts. As mentioned in this study, the Chagas disease control program in the country was formally established in 2003–2004, in response to recommendations from a technical consultation through PAHO/WHO [3] and field studies [4,5]. This consultation and data provided a baseline to prioritize activities. It reported a national seroprevalence of Trypanosoma cruzi infection of 1.38%, corresponding to 165–170,000 seropositive patients in the country. Three regions were prioritized: the coastal region (seroprevalence of 1.99%), the Amazon region (1.75%) and the southern highlands (0.65%). The incidence was estimated at 36 cases/100,000 inhabitants/year, resulting in 4,400 new cases each year [3]. Today, the most recent estimates from the WHO suggest the presence of nearly 200,000 seropositive patients and a current incidence of 14 cases/100,000 inhabitants/year [6]. An in depth analysis of the complete records from the Ministry of Public Health from 2004–2014, indicates a total of 915 reported human cases in the country, with a major increase over the years followed by a decrease in the past two years [7]. This increase reflects the efforts at improving the epidemiologic surveillance program, but it is clear that there is still significant underreporting of cases in the country. Indeed, several independent and recent seroprevalence studies in different regions and communities point out relatively high levels of seroprevalence of T. cruzi infection (ranging from 0.6 to 13.3%), and persistent active parasite transmission, as evidenced by the detection of seropositive children [8–12]. Additionally, there are reports of Chagas disease cases in regions where the Ministry of Public Health has no records of patients, further highlighting current underreporting [5,11,12]. Furthermore, while during the last decade Ecuador has achieved near 100% blood screening coverage for T. cruzi infection, the 15 participating blood banks regularly report seropositive blood donors to the External Performance Evaluation of Serological Screening Program administered by the Pontifical Catholic University of Ecuador. The vector control program was effectively started in 2004. However, due to limited human and financial resources, there have been important variations in the geographic coverage of the surveillance and control activities from year to year [7]. Importantly, a total of 12 provinces have not been included in these activities, representing an area larger than the covered provinces. Therefore, the available data do not correspond to a systematic national coverage, and thus still present an incomplete picture of the current transmission of Chagas disease in Ecuador. In the 11 provinces in which surveillance and control activities have been performed, house infestation by triatomines is still observed in many regions [7,13]. While vector control activities have had a significant effect and allowed reducing the infestation level, particularly in coastal Ecuador, these need to be sustained to avoid reinfestation and provide long-term effects. Also, while insecticide spraying may be effective against Triatoma dimidiata, a possibly domiciliated species which is poised for elimination in Ecuador, alternative control strategies may be needed against intrusive triatomine species such as Rhodnius ecuadoriensis or Panstrongylus howardi or for occasional exposure outside of homes [14–19]. Moreover, no formal vector control intervention has been implemented in the Amazon region, where nearly half of the cases of the country seem to originate [7], and active transmission still occurs through triatomine species including Rhodnius robustus and R. pictipes [8,9]. Especially in the Amazon, human activities (deforestation, urbanization) disturb the natural balance between the vectors, their wild hosts and the parasite, favoring the emergence of new transmission cycles in which humans may be included [8,9,11,20]. An accurate description of the situation of Chagas disease in Ecuador should mention that access to diagnosis throughout the country is limited and case detection during the last two decades has been sporadic and geographically restricted. Indeed, only one laboratory in the whole country, at the Instituto Nacional de Investigacion en Salud Publica (INSPI), performs official confirmation of anti-T. cruzi seropositivity and releases Nifurtimox for the treament of patients. In fact, we believe that lack of awareness by health care personnel in areas with active vectorial transmission, combined with lack of diagnostic capacity elsewhere in the country, have resulted in a gross under reporting of cases in Ecuador. Taken together, these data and studies highlight that Chagas disease is all but controlled in Ecuador, contrary to what is stated by Cartelle Gestal et al. While it is clear that disease surveillance and vector control activities from the Ministry of Public Health have improved over the years, these need to (i) reach national coverage to ensure the inclusion of all endemic provinces, and (ii) be sustained to ensure that what has been achieved can result in long-term control of the disease. These represent a clear challenge at a time when the Ministry of Public Health is undergoing major structural reorganization and many of its activities are being decentralized or interrupted. Indeed, there is a decrease in reported human cases and in vector controls activities observed in the past two years in Ecuador [7], which may reflect the interruption of the National Chagas Program and the Servicio Nacional de Control y Vigilancia de Enfermedades Transmitidas por Vectores Artropodos (SNEM) in late 2015. Their actions have not been replaced yet, so that there is currently no Chagas vector control program in the country. This can strongly jeopardize the results achieved so far and may be a lost opportunity to eliminate vectorial transmission with domiciliated vectors in some regions of Ecuador. Finally, as in many other countries in Latin America, current activities for Chagas disease control in Ecuador still need to improve treatment access and care for Chagas disease patients [21–23] as well as to better understand the importance of congenital transmission in the epidemiology of the disease [9,24]. Thus, control of Chagas disease in the country will only be reached if the programs from the Ministry of Public Health are strengthened and expanded. The National Chagas disease control programs in other Latin America countries such as Brazil, Argentina, or Colombia (among others) can provide key examples of successful strategies for Chagas disease surveillance and control, as well as of the challenges encountered for their implementation. Additionally, research needs to be performed to further expand our understanding of triatomine infestation and T. cruzi transmission cycles in the different specific endemic areas, to help further tailor surveillance and interventions. More than claiming that Chagas disease is controlled, we need to promote further political commitment to sustain current achievements in Chagas disease surveillance and control in Ecuador and to ensure that the goals of the London declaration on neglected tropical diseases [25] are met in the near future.

28 citations

Journal ArticleDOI
01 Jun 2020-Heliyon
TL;DR: The Energy Return on Investment (EROI) for bioethanol and biodiesel is determined to address the issue of unknown or unnoticed net energy contribution of biofuels in Ecuador and suggests feasibility only for sugarcane in the case of ethanol.

28 citations

Journal ArticleDOI
TL;DR: The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of LeishMania (Viannia) braziliensis/L.
Abstract: The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana is endemic. A total of 2,997 female sand flies were captured by CDC light traps and Shannon traps, of which 2,931 and 66 flies were identified as Lutzomyia tejadai and Lu fischeri, respectively. Using crude DNA extracted from individual sand flies as a template, Leishmania DNA was detected from one Lu. tejadai. The parasite species was identified as a hybrid of L. (V.) braziliensis/L. (V.) peruviana on the basis of cytochrome b and mannose phosphate isomerase gene analyses. The result suggested that Lu. tejadai is responsible for the transmission of the hybrid Leishmania circulating in this area.

28 citations


Authors

Showing all 2257 results

Network Information
Related Institutions (5)
University of Los Andes
25.5K papers, 413.4K citations

79% related

National University of Colombia
43.4K papers, 395.7K citations

77% related

University of Salamanca
27.6K papers, 607.3K citations

77% related

University of Córdoba (Spain)
22.9K papers, 537.8K citations

76% related

National University of Cordoba
20.1K papers, 355.1K citations

76% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202312
202241
2021225
2020272
2019240
2018220