scispace - formally typeset
Search or ask a question
Institution

Global Alliance in Management Education

About: Global Alliance in Management Education is a based out in . It is known for research contribution in the topics: Magnetic field & Skyrmion. The organization has 577 authors who have published 2057 publications receiving 72848 citations. The organization is also known as: CEMS & The Global Alliance in Management Education.
Topics: Magnetic field, Skyrmion, Quantum, Qubit, Spin-½


Papers
More filters
Journal ArticleDOI
TL;DR: The optimal work extraction process is given as a concrete energy-preserving unitary time evolution among the heat baths and the work storage, and it is shown that this process turns the disordered energy of the heat bath to the ordered energy ofThe work storage.
Abstract: The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the authors obtained exact solutions for local equilibrium and nonequilibrium out-of-time-ordered correlation functions for a lattice fermion model with on-site interactions, namely, the Falicov-Kimball (FK) model, in the large dimensional and thermodynamic limit.
Abstract: Exact solutions for local equilibrium and nonequilibrium out-of-time-ordered correlation (OTOC) functions are obtained for a lattice fermion model with on-site interactions, namely, the Falicov-Kimball (FK) model, in the large dimensional and thermodynamic limit. Our approach is based on the nonequilibrium dynamical mean-field theory generalized to an extended Kadanoff-Baym contour. We find that the density-density OTOC is most enhanced at intermediate coupling around the metal-insulator phase transition. In the high-temperature limit, the OTOC remains nontrivially finite and interaction dependent, even though dynamical charge correlations probed by an ordinary response function are completely suppressed. We propose an experiment to measure OTOCs of fermionic lattice systems including the FK and Hubbard models in ultracold atomic systems.

48 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional polariton condensate of a fraction of a millimeter radius free from the presence of an exciton reservoir is reported, and the density of this trap-free Condensate is < 1 ǫ polariton/μm 2, reducing the phase noise induced by the interaction energy.
Abstract: We report a record-size, two-dimensional polariton condensate of a fraction of a millimeter radius free from the presence of an exciton reservoir. This macroscopically occupied state is formed by the ballistically expanding polariton flow that relaxes and condenses over a large area outside of the excitation spot. The density of this trap-free condensate is <1 polariton/μm^{2}, reducing the phase noise induced by the interaction energy. Moreover, the backflow effect, recently predicted for the nonparabolic polariton dispersion, is observed here for the first time in the fast-expanding wave packet.

48 citations

Journal ArticleDOI
TL;DR: The first report of superconductivity based on the advanced first-principles theoretical approach is provided, finding that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d- wave state.
Abstract: Heavy-fermion superconductors are prime candidates for novel electron-pairing states due to the spin-orbital coupled degrees of freedom and electron correlations. Superconductivity in CeCu_{2}Si_{2} discovered in 1979, which is a prototype of unconventional (non-BCS) superconductors in strongly correlated electron systems, still remains unsolved. Here we provide the first report of superconductivity based on the advanced first-principles theoretical approach. We find that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d-wave state. The dominant pairing glue is magnetic but high-rank octupole fluctuations. This system shares the importance of multiorbital degrees of freedom with the iron-based superconductors. Our findings reveal not only the long-standing puzzle in this material, but also urge us to reconsider the pairing states and mechanisms in all heavy-fermion superconductors.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the Griffiths singularity is observed in 2D superconducting ZrNCl and MoS2 and the scaling behavior is characterized by the diverging dynamical critical exponent (Griffiths singularity).
Abstract: Superconductor-insulator transition is one of the remarkable phenomena driven by quantum fluctuation in two-dimensional (2D) systems. Such a quantum phase transition (QPT) was investigated predominantly on highly disordered thin films with amorphous or granular structures using scaling law with constant exponents. Here, we provide a totally different view of QPT in highly crystalline 2D superconductors. According to the magneto-transport measurements in 2D superconducting ZrNCl and MoS2, we found that the quantum metallic state commonly observed at low magnetic fields is converted via the quantum Griffiths state to the weakly localized metal at high magnetic fields. The scaling behavior, characterized by the diverging dynamical critical exponent (Griffiths singularity), indicates that the quantum fluctuation manifests itself as superconducting puddles, in marked contrast with the thermal fluctuation. We suggest that an evolution from the quantum metallic to the quantum Griffiths state is generic nature in highly crystalline 2D superconductors with weak pinning potentials.

47 citations


Authors

Showing all 577 results

NameH-indexPapersCitations
Yang Li117131963111
Yoshinori Tokura11785870258
Franco Nori114111763808
Fabio Marchesoni10460774687
Naoto Nagaosa10165951153
Masashi Kawasaki9885647863
Takuzo Aida9547937136
Wei Cui9054027921
Yong Xu88139139268
Daniel Loss8664540817
Yasuhiro Tokura8357927472
Sadamichi Maekawa8176928964
D. Xu8043621679
Y. Tokura7857427348
Takao Someya7743030384
Network Information
Related Institutions (5)
Forschungszentrum Jülich
35.6K papers, 994.1K citations

88% related

Argonne National Laboratory
64.3K papers, 2.4M citations

88% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Pohang University of Science and Technology
35.9K papers, 1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
2021213
2020270
2019258
2018251
2017256