scispace - formally typeset
Search or ask a question
Institution

Global Alliance in Management Education

About: Global Alliance in Management Education is a based out in . It is known for research contribution in the topics: Magnetic field & Skyrmion. The organization has 577 authors who have published 2057 publications receiving 72848 citations. The organization is also known as: CEMS & The Global Alliance in Management Education.
Topics: Magnetic field, Skyrmion, Quantum, Qubit, Spin-½


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reported the emergence of a Bloch-type skyrmion state in the frustrated centrosymmetric triangular-lattice magnet Gd2PdSi3.
Abstract: Geometrically frustrated magnets provide abundant opportunities for discovering complex spin textures, which sometimes yield unconventional electromagnetic responses in correlated electron systems. It is theoretically predicted that magnetic frustration may also promote a topologically nontrivial spin state, i.e., magnetic skyrmions, which are nanometric spin vortices. Empirically, however, skyrmions are essentially concomitant with noncentrosymmetric lattice structures or interfacial-symmetry-breaking heterostructures. Here, we report the emergence of a Bloch-type skyrmion state in the frustrated centrosymmetric triangular-lattice magnet Gd2PdSi3. We identified the field-induced skyrmion phase via a giant topological Hall response, which is further corroborated by the observation of in-plane spin modulation probed by resonant x-ray scattering. Our results exemplify a new gold mine of magnetic frustration for producing topological spin textures endowed with emergent electrodynamics in centrosymmetric magnets.

171 citations

Journal ArticleDOI
TL;DR: It is theoretically shown by microsimulation that local heating can create topological magnetic textures, skyrmions, in a ferromagnetic background of chiral magnets and dipolar magnets, which constitutes an important step towards their application to memory devices.
Abstract: The manipulation of magnetic skyrmions in thin films has presented new possibilities for emerging devices and technology. Here, Koshibae et al. use numerical simulations to show how localized nanoscale heating can generate such chiral topological spin textures in both dipolar and chiral magnets.

170 citations

Journal ArticleDOI
TL;DR: In this paper, a multilayered nanomesh device was used to monitor the field potential of human induced pluripotent stem cell-derived cardiomyocytes on a hydrogel, while enabling them to move dynamically without interference.
Abstract: In biointegrated electronics, the facile control of mechanical properties such as softness and stretchability in electronic devices is necessary to minimize the perturbation of motions inherent in biological systems1–5. For in vitro studies, multielectrode-embedded dishes6–8 and other rigid devices9–12 have been widely used. Soft or flexible electronics on plastic or elastomeric substrates13–15 offer promising new advantages such as decreasing physical stress16–18 and/or applying mechanical stimuli19,20. Recently, owing to the introduction of macroporous plastic substrates with nanofibre scaffolds21,22, three-dimensional electrophysiological mapping of cardiomyocytes has been demonstrated. However, quantitatively monitoring cells that exhibit significant dynamical motions via electric probes over a long period without affecting their natural motion remains a challenge. Here, we present ultrasoft electronics with nanomeshes that monitor the field potential of human induced pluripotent stem cell-derived cardiomyocytes on a hydrogel, while enabling them to move dynamically without interference. Owing to the extraordinary softness of the nanomeshes, nanomesh-attached cardiomyocytes exhibit contraction and relaxation motions comparable to that of cardiomyocytes without attached nanomeshes. Our multilayered nanomesh devices maintain reliable operations in a liquid environment, enabling the recording of field potentials of the cardiomyocytes over a period of 96 h without significant degradation of the nanomesh devices or damage of the cardiomyocytes. Ultrasoft nanomesh electronics enable monitoring of the field potential of cardiomyocytes without interference with their natural motion.

170 citations

Journal ArticleDOI
TL;DR: In this article, the authors report layer-by-layer epitaxial growth of scalable transition-metal dichalocogenide (TMDC) thin films on insulating substrates by MBE and demonstrate ambipolar transistor operation.
Abstract: Molecular beam epitaxy (MBE) provides a simple but powerful way to synthesize large-area high-quality thin films and heterostructures of a wide variety of materials including accomplished group III–V and II–VI semiconductors as well as newly developing oxides and chalcogenides, leading to major discoveries in condensed-matter physics. For two-dimensional (2D) materials, however, main fabrication routes have been mechanical exfoliation and chemical vapor deposition by making good use of weak van der Waals bonding nature between neighboring layers, and MBE growth of 2D materials, in particular on insulating substrates for transport measurements, has been limited despite its fundamental importance for future advanced research. Here, we report layer-by-layer epitaxial growth of scalable transition-metal dichalocogenide (TMDC) thin films on insulating substrates by MBE and demonstrate ambipolar transistor operation. The proposed growth protocol is broadly applicable to other TMDCs, providing a key milestone to...

165 citations

Journal ArticleDOI
TL;DR: In this paper, the interplay between topological and thermodynamic stability has been probed experimentally by creating metastable magnetic skyrmion lattices, and it has been shown that topological protection can stabilize states of matter, but for how long.
Abstract: Topological protection can stabilize states of matter, but for how long? By creating metastable magnetic skyrmion lattices, the interplay between topological and thermodynamic stability has now been probed experimentally.

164 citations


Authors

Showing all 577 results

NameH-indexPapersCitations
Yang Li117131963111
Yoshinori Tokura11785870258
Franco Nori114111763808
Fabio Marchesoni10460774687
Naoto Nagaosa10165951153
Masashi Kawasaki9885647863
Takuzo Aida9547937136
Wei Cui9054027921
Yong Xu88139139268
Daniel Loss8664540817
Yasuhiro Tokura8357927472
Sadamichi Maekawa8176928964
D. Xu8043621679
Y. Tokura7857427348
Takao Someya7743030384
Network Information
Related Institutions (5)
Forschungszentrum Jülich
35.6K papers, 994.1K citations

88% related

Argonne National Laboratory
64.3K papers, 2.4M citations

88% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Pohang University of Science and Technology
35.9K papers, 1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
2021213
2020270
2019258
2018251
2017256