scispace - formally typeset
Search or ask a question
Institution

Global Alliance in Management Education

About: Global Alliance in Management Education is a based out in . It is known for research contribution in the topics: Magnetic field & Skyrmion. The organization has 577 authors who have published 2057 publications receiving 72848 citations. The organization is also known as: CEMS & The Global Alliance in Management Education.
Topics: Magnetic field, Skyrmion, Quantum, Qubit, Spin-½


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a tune-free scheme to realize Kramers pairs of Majorana bound states in higher-order topological insulators (HOTIs) was proposed.
Abstract: We propose a tune-free scheme to realize Kramers pairs of Majorana bound states in recently discovered higher-order topological insulators (HOTIs). We show that, by bringing two hinges of a HOTI into the proximity of an s-wave superconductor, the competition between local and crossed Andreev pairing leads to the formation of Majorana Kramers pairs, when the latter pairing dominates over the former. We demonstrate that such a topological superconductivity is stabilized by moderate electron-electron interactions. The proposed setup avoids the application of a magnetic field or local voltage gates, and requires weaker interactions compared with nonhelical nanowires.

174 citations

Journal ArticleDOI
TL;DR: A multilayered semimetal β-CuAgSe with glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.
Abstract: The electron mobility is one of the key parameters that characterize the charge-carrier transport properties of materials, as exemplified by the quantum Hall effect as well as high-efficiency thermoelectric and solar energy conversions. For thermoelectric applications, introduction of chemical disorder is an important strategy for reducing the phonon-mediated thermal conduction, but is usually accompanied by mobility degradation. Here, we show a multilayered semimetal β-CuAgSe overcoming such a trade-off between disorder and mobility. The polycrystalline ingot shows a giant positive magnetoresistance and Shubnikov de Haas oscillations, indicative of a high-mobility small electron pocket derived from the Ag s-electron band. Ni doping, which introduces chemical and lattice disorder, further enhances the electron mobility up to 90,000 cm(2) V(-1) s(-1) at 10 K, leading not only to a larger magnetoresistance but also a better thermoelectric figure of merit. This Ag-based layered semimetal with a glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.

174 citations

Journal ArticleDOI
TL;DR: An experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity is proposed and the generation of steady-state nearly maximal quantum entanglement is demonstrated.
Abstract: We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (ie, cooperativity) in an optical cavity It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100 Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing In principle, we can make an arbitrarily small infidelity Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing

174 citations

Journal ArticleDOI
TL;DR: The realization of the quantum Hall effect on the surface Dirac states in (Bi1-xSbx)2Te3 films is reported and may pave a way toward topological insulator-based electronics.
Abstract: The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi2Se3, Bi2Te3, Sb2Te3 and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi1−xSbx)2Te3 films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics. Three-dimensional topological insulators are materials that are nonmagnetic insulators in the bulk but exhibit metallic surface states. Yoshimi et al, now identify a signature of such two-dimensional states, the quantum Hall effect, in bismuth-based chalcogenide topological insulators.

174 citations

Journal ArticleDOI
TL;DR: The large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wave number at the surface of TI, and the UMR was identified to originate from the asymmetric scattering of electrons by magnons.
Abstract: We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic or nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, that is several orders of magnitude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wave number at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wave number.

173 citations


Authors

Showing all 577 results

NameH-indexPapersCitations
Yang Li117131963111
Yoshinori Tokura11785870258
Franco Nori114111763808
Fabio Marchesoni10460774687
Naoto Nagaosa10165951153
Masashi Kawasaki9885647863
Takuzo Aida9547937136
Wei Cui9054027921
Yong Xu88139139268
Daniel Loss8664540817
Yasuhiro Tokura8357927472
Sadamichi Maekawa8176928964
D. Xu8043621679
Y. Tokura7857427348
Takao Someya7743030384
Network Information
Related Institutions (5)
Forschungszentrum Jülich
35.6K papers, 994.1K citations

88% related

Argonne National Laboratory
64.3K papers, 2.4M citations

88% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

87% related

Pohang University of Science and Technology
35.9K papers, 1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
2021213
2020270
2019258
2018251
2017256