scispace - formally typeset
Search or ask a question
Institution

Huazhong University of Science and Technology

EducationWuhan, China
About: Huazhong University of Science and Technology is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Population & Computer science. The organization has 120339 authors who have published 122521 publications receiving 2168040 citations. The organization is also known as: Central China University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A single institutional study was performed to evaluate deep vein thrombosis in hospitalized patients with coronavirus disease 2019 (COVID-19) to evaluate its prevalence, risk, and benefits.
Abstract: Background: To investigate deep vein thrombosis (DVT) in hospitalized patients with coronavirus disease 2019 (COVID-19), we performed a single institutional study to evaluate its prevalence, risk f...

313 citations

Journal ArticleDOI
20 Aug 2020-Nature
TL;DR: Analysis of the full-spectrum transmission dynamics of COVID-19 in Wuhan reveals that multipronged non-pharmaceutical interventions were effective in controlling the outbreak, and highlights that covert infections may pose risks of resurgence when reopening without intervention measures.
Abstract: As countries in the world review interventions for containing the pandemic of coronavirus disease 2019 (COVID-19), important lessons can be drawn from the study of the full transmission dynamics of its causative agent—severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)— in Wuhan (China), where vigorous non-pharmaceutical interventions have suppressed the local outbreak of this disease1. Here we use a modelling approach to reconstruct the full-spectrum dynamics of COVID-19 in Wuhan between 1 January and 8 March 2020 across 5 periods defined by events and interventions, on the basis of 32,583 laboratory-confirmed cases1. Accounting for presymptomatic infectiousness2, time-varying ascertainment rates, transmission rates and population movements3, we identify two key features of the outbreak: high covertness and high transmissibility. We estimate 87% (lower bound, 53%) of the infections before 8 March 2020 were unascertained (potentially including asymptomatic and mildly symptomatic individuals); and a basic reproduction number (R0) of 3.54 (95% credible interval 3.40–3.67) in the early outbreak, much higher than that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)4,5. We observe that multipronged interventions had considerable positive effects on controlling the outbreak, decreasing the reproduction number to 0.28 (95% credible interval 0.23–0.33) and—by projection—reducing the total infections in Wuhan by 96.0% as of 8 March 2020. We also explore the probability of resurgence following the lifting of all interventions after 14 consecutive days of no ascertained infections; we estimate this probability at 0.32 and 0.06 on the basis of models with 87% and 53% unascertained cases, respectively—highlighting the risk posed by substantial covert infections when changing control measures. These results have important implications when considering strategies of continuing surveillance and interventions to eventually contain outbreaks of COVID-19. Analysis of the full-spectrum transmission dynamics of COVID-19 in Wuhan reveals that multipronged non-pharmaceutical interventions were effective in controlling the outbreak, and highlights that covert infections may pose risks of resurgence when reopening without intervention measures.

313 citations

Journal ArticleDOI
TL;DR: By synthesising early experiences from countries that have managed a surge in patient numbers, emerging virological data, and international, multidisciplinary expert opinion, this work aims to provide consensus guidelines and recommendations on the conduct and management of tracheostomy during the COVID-19 pandemic.

313 citations

Journal ArticleDOI
TL;DR: A series of promising therapeutic approaches that target theNLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds are reviewed, however, these approaches are still experimental in neurological diseases.
Abstract: Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases.

313 citations

Journal ArticleDOI
TL;DR: Experimental results showed that the liquid refractive index information can be simultaneously provided from measuring the sensitivity of the liquid level and from employing a multimode fiber as a mode coupler in the thinned fiber based Mach-Zehnder interferometer.
Abstract: We propose and demonstrate a thinned fiber based Mach-Zehnder interferometer for multi-purpose sensing applications. The sensor head is formed by all-fiber in-line singlemode-multimode-thinned-singlemode (SMTS) fiber structure, only using the splicing method. The principle of operation relies on the effect that the thinned fiber cladding modes interference with the core mode by employing a multimode fiber as a mode coupler. Experimental results showed that the liquid refractive index information can be simultaneously provided from measuring the sensitivity of the liquid level. A 9.00 mm long thinned fiber sensor at a wavelength of 1538.7228 nm exhibits a water level sensitivity of -175.8 pm/mm, and refractive index sensitivity as high as -1868.42 (pm/mm)/RIU, respectively. The measuring method is novel, for the first time to our knowledge. In addition, it also demonstrates that by monitoring the wavelength shift, the sensor at a wavelength of 1566.4785 nm exhibits a refractive index sensitivity of -25.2935 nm/RIU, temperature sensitivity of 0.0615 nm/°C, and axial strain sensitivity of -2.99 pm/μe, respectively. Moreover, the sensor fabrication process is very simple and cost effective.

312 citations


Authors

Showing all 121301 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Frank B. Hu2501675253464
Zhong Lin Wang2452529259003
Edward Giovannucci2061671179875
Eric B. Rimm196988147119
Yang Yang1712644153049
Gang Chen1673372149819
John B. Goodenough1511064113741
Yoshio Bando147123480883
Guanrong Chen141165292218
Lihong V. Wang136111872482
Yu Huang136149289209
Richard G. Pestell13047954210
Dmitri Golberg129102461788
Britton Chance128111276591
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Fudan University
117.9K papers, 2.6M citations

93% related

Peking University
181K papers, 4.1M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023386
20222,147
202113,665
202013,448
201911,134