scispace - formally typeset
Search or ask a question
Institution

Imperial College London

EducationLondon, Westminster, United Kingdom
About: Imperial College London is a education organization based out in London, Westminster, United Kingdom. It is known for research contribution in the topics: Population & Medicine. The organization has 90019 authors who have published 209164 publications receiving 9337534 citations. The organization is also known as: Imperial College of Science, Technology and Medicine & Imperial College.


Papers
More filters
Journal ArticleDOI
TL;DR: As the programme grows, these actions will pose new problems for the sus tainability of large-scale CHW programmes, and might again lay bare the tensions between the diff erent expec tations and descriptions of the CHW.

907 citations

Book
01 Jan 2001
TL;DR: The book consists of three sections and provides a tutorial overview of the principles underlying data mining algorithms and their application, and shows how all of the preceding analysis fits together when applied to real-world data mining problems.
Abstract: The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

907 citations

Book ChapterDOI
07 Oct 2012
TL;DR: KAZE features, a novel multiscale 2D feature detection and description algorithm in nonlinear scale spaces, can make blurring locally adaptive to the image data, reducing noise but retaining object boundaries, obtaining superior localization accuracy and distinctiviness.
Abstract: In this paper, we introduce KAZE features, a novel multiscale 2D feature detection and description algorithm in nonlinear scale spaces. Previous approaches detect and describe features at different scale levels by building or approximating the Gaussian scale space of an image. However, Gaussian blurring does not respect the natural boundaries of objects and smoothes to the same degree both details and noise, reducing localization accuracy and distinctiveness. In contrast, we detect and describe 2D features in a nonlinear scale space by means of nonlinear diffusion filtering. In this way, we can make blurring locally adaptive to the image data, reducing noise but retaining object boundaries, obtaining superior localization accuracy and distinctiviness. The nonlinear scale space is built using efficient Additive Operator Splitting (AOS) techniques and variable conductance diffusion. We present an extensive evaluation on benchmark datasets and a practical matching application on deformable surfaces. Even though our features are somewhat more expensive to compute than SURF due to the construction of the nonlinear scale space, but comparable to SIFT, our results reveal a step forward in performance both in detection and description against previous state-of-the-art methods.

905 citations

Journal ArticleDOI
TL;DR: It is suggested that the stimulatory effect of the ionic products of Bioglass 45S5 dissolution on osteoblast proliferation may be mediated by IGF-II.

904 citations

Journal ArticleDOI
TL;DR: A modified maximal ball algorithm is developed to extract simplified networks of pores and throats with parametrized geometry and interconnectivity from images of the pore space.
Abstract: Network models that represent the void space of a rock by a lattice of pores connected by throats can predict relative permeability once the pore geometry and wettability are known. Micro-computerized-tomography scanning provides a three-dimensional image of the pore space. However, these images cannot be directly input into network models. In this paper a modified maximal ball algorithm, extending the work of Silin and Patzek [D. Silin and T. Patzek, Physica A 371, 336 (2006)], is developed to extract simplified networks of pores and throats with parametrized geometry and interconnectivity from images of the pore space. The parameters of the pore networks, such as coordination number, and pore and throat size distributions are computed and compared to benchmark data from networks extracted by other methods, experimental data, and direct computation of permeability and formation factor on the underlying images. Good agreement is reached in most cases allowing networks derived from a wide variety of rock types to be used for predictive modeling.

904 citations


Authors

Showing all 90798 results

NameH-indexPapersCitations
Albert Hofman2672530321405
David Miller2032573204840
Tamara B. Harris2011143163979
Mark I. McCarthy2001028187898
Peter J. Barnes1941530166618
Simon D. M. White189795231645
Patrick W. Serruys1862427173210
John Hardy1771178171694
Simon Baron-Cohen172773118071
Richard H. Friend1691182140032
Yang Gao1682047146301
Hongfang Liu1662356156290
Philippe Froguel166820118816
Salvador Moncada164495138030
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
University of Cambridge
282.2K papers, 14.4M citations

97% related

University College London
210.6K papers, 9.8M citations

96% related

University of Oxford
258.1K papers, 12.9M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

94% related

Stanford University
320.3K papers, 21.8M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023413
20221,329
202112,883
202012,473
201911,096
201810,236