scispace - formally typeset
Search or ask a question
Institution

Jiangxi University of Science and Technology

EducationGanzhou, China
About: Jiangxi University of Science and Technology is a education organization based out in Ganzhou, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 6958 authors who have published 5576 publications receiving 50650 citations.


Papers
More filters
Journal ArticleDOI
Abstract: A nonprecious electrocatalyst with high efficiency in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is extremely crucial for the development of high-performing metal–air ...

37 citations

Journal ArticleDOI
TL;DR: In this article, the macro-micro mining response of the surrounding rock and overlying strata towards the transformation from open-pit to underground mining is examined, based on the engineering background of the Jinning phosphate mine (Yunnan Phosphate Chemical Group Co., Ltd).
Abstract: The macro-micro mining response of the surrounding rock and overlying strata towards the transformation from open-pit to underground mining is examined in the present study, based on the engineering background of the Jinning phosphate mine (Yunnan Phosphate Chemical Group Co., Ltd.) via simulations involving similar materials, digital photographic measurement technology, and numerical simulation. The mining deformation of the surrounding rock underground, and of the overlying strata, is shown to develop in three stages, namely: (1) small and local deformation, (2) continuous linear increase, and (3) the violent nonlinear collapse of the entire system. The internal distribution of stress in the surrounding rock and adjacent overlying strata of the inclined mined-out area is complicated. The degrees of pressure increase and pressure relief have an important relationship with the size of the mining space. The pressure relief is more complete close to the mined area, and the stress reduction decreases with increasing distance. The cracks propagate in arc shapes and have a tendency to penetrate into the upper and lower ends of the stope. The size of the excavation space plays a key role in the generation, propagation, and penetration of the cracks. Due to the disturbance of the first mining level and the increase in excavation depth, the rate of damage to the surrounding and overlying rock increases in the second mining level. This process generates more cracks, which accelerate the instability of the surrounding rock and overlying strata.

37 citations

Journal ArticleDOI
TL;DR: Flotation waste of copper slag was used as a raw material for the preparation of a micro-electrolysis material (MEM) through a carbothermal reduction process and the performance of MEM was evaluated for the degradation of organic contaminants in water.

37 citations

Journal ArticleDOI
TL;DR: In this paper, a novel layered hexagonal boron nitride/titanium dioxide composite photocatalyst has been constructed by anchoring TiO2 nanoflakes on the surface of h-BN flakes via a solvothermal method.
Abstract: A novel layered hexagonal boron nitride/titanium dioxide (h-BN/TiO2) composite photocatalyst has been constructed by anchoring TiO2 nanoflakes on the surface of h-BN flakes via a solvothermal method. The morphology and dispersion of TiO2 can be tuned by controlling the amount of flake h-BN. Benefiting from the unique hetero-structure, the photocatalytic performance of the obtained composite toward rhodamine B (RhB) degradation is greatly enhanced, among which 12 wt% h-BN/TiO2 composites show 3.5 and 6.9 times higher degradation rate than the synthesized TiO2 and commercial TiO2 (P25), respectively, and an excellent cycling stability has also been obtained. Moreover, the first-principles calculation reveals the synergetic catalytic effect between TiO2 and h-BN flake, which is found to be responsible for the significantly enhanced photocatalytic performance of h-BN/TiO2 composites.

37 citations

Journal ArticleDOI
TL;DR: MnO2 catalysis of oxygen reduction was proposed to accelerate the degradation of Fe-C biocomposite in this article, which showed high hardness with wear resistance and stable mechanical properties during degradation.

37 citations


Authors

Showing all 7009 results

NameH-indexPapersCitations
Hua Zhang1631503116769
Wei Li1581855124748
Mingwei Chen10853651351
Hongjie Zhang9276033301
Aibing Yu8693034127
Shiyong Liu7926619061
Chun-Hua Yan7333619972
Xiaobo Ji7336017916
Yang Hou6423514113
Hao Su5730255902
Jian Tian5617513090
Lei Wang54107615189
Jiafu Wan5416712244
Peng Cheng523629193
Heng-Yun Ye472049435
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

88% related

South China University of Technology
69.4K papers, 1.2M citations

88% related

Dalian University of Technology
71.9K papers, 1.1M citations

87% related

Chongqing University
57.8K papers, 784.6K citations

87% related

Northwestern Polytechnical University
56K papers, 657K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202336
2022129
2021993
2020912
2019618
2018404