scispace - formally typeset
Search or ask a question
Institution

Khalifa University

EducationAbu Dhabi, United Arab Emirates
About: Khalifa University is a education organization based out in Abu Dhabi, United Arab Emirates. It is known for research contribution in the topics: Computer science & Adsorption. The organization has 3752 authors who have published 10909 publications receiving 141629 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new experimental technique is presented to allow laboratory-scale observation of underwater blast loading on circular plates, including dynamic deformation and failure of the plates as well as the sequence of cavitation events in water.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of binary oxides M-Ce-O was meticulously investigated and correlated to their CO oxidation activity.
Abstract: CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted sol-gel synthesis to improve catalyst's performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides M-Ce-O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, s-1) follows the order Cu-Ce-O > Ce-Co-O > Ni-Ce-O > Mn-Ce-O > Fe-Ce-O > Ce-Zn-O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Mars-van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the α descriptor) in the reaction, following the order αCu > αCo> αMn > αZn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (-16.63 eV), followed by Co, Mn, Zn (-14.46, -4.90, and -4.24 eV, respectively), and pure CeO2 (-0.63 eV). Also, copper compensates almost three times more charge (0.37e-) compared to Co and Mn, ca. 0.13e- and 0.10e-, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements, revealed a heteroatom-ceria surface interaction (Oa species) of different extents and of different populations of Oa species.

57 citations

Journal ArticleDOI
TL;DR: A review of surface treatment techniques for Mg and Mg alloys with cytotoxicity can be found in this paper, where related problems and possible solutions for mg-based alloys are discussed.

57 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a privacy-preserving charging station-to-vehicle (CS2V) energy trading scheme, which is useful in crowded cities where there is a need for a charging infrastructure that can charge many EVs daily.
Abstract: An energy trading system is essential for the successful integration of Electric Vehicles (EVs) into the smart grid. In this paper, leveraging blockchain technology, we first propose a privacy-preserving charging-station-to-vehicle (CS2V) energy trading scheme. The CS2V scheme is useful in crowded cities where there is a need for a charging infrastructure that can charge many EVs daily. We also propose a privacy-preserving vehicle-to-vehicle (V2V) energy trading scheme. The V2V scheme is useful when charging stations are not available or far and cheaper prices can be offered from EVs, e.g., if they charge from renewable energy sources. In the V2V scheme, the privacy of both charging and discharging EVs including location, time, and amount of power are preserved. To preserve privacy in both schemes, EVs are anonymous, however, a malicious EV may abuse the anonymity to launch Sybil attacks by pretending as multiple non-exiting EVs to launch powerful attacks such as Denial of Service (DoS) by submitting multiple reservations/offers without committing to them, to prevent other EVs from charging and make the trading system unreliable. To thwart the Sybil attacks, we use a common prefix linkable anonymous authentication scheme, so that if an EV submits multiple reservations/offers at the same timeslot, the blockchain can identify such submissions. To further protect the privacy of EV drivers, we introduce an anonymous and efficient blockchain-based payment system that cannot link individual drivers to specific charging locations. Our experimental results indicate that our schemes are secure and privacy-preserving with low communication and computation overheads.

57 citations

Journal ArticleDOI
TL;DR: A low-cost, effectual and sustainable biosorbent for effective treatment of Cr(VI) ions polluted water streams has been reported.

57 citations


Authors

Showing all 3860 results

NameH-indexPapersCitations
Xavier Estivill11067359568
Gordon McKay9766161390
Muhammad Imran94305351728
Muhammad Shahbaz92100134170
Paul J. Thornalley8932127613
Paolo Dario86103431541
N. Vilchez8313325834
Andrew Jones8369528290
Christophe Ballif8269626162
Khaled Ben Letaief7977429387
Muhammad Iqbal7796123821
George K. Karagiannidis7665324066
Hilal A. Lashuel7323318485
Nasir Memon7339219189
Nidal Hilal7239521524
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

Delft University of Technology
94.4K papers, 2.7M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202370
2022237
20212,294
20202,083
20191,657
20181,327