scispace - formally typeset
Search or ask a question
Institution

Lawrence Berkeley National Laboratory

FacilityBerkeley, California, United States
About: Lawrence Berkeley National Laboratory is a facility organization based out in Berkeley, California, United States. It is known for research contribution in the topics: Catalysis & Laser. The organization has 28217 authors who have published 66584 publications receiving 4111321 citations. The organization is also known as: LBNL & LBL.
Topics: Catalysis, Laser, Galaxy, Population, Electron


Papers
More filters
Journal ArticleDOI
TL;DR: The re-optimization of a recently proposed long-range corrected hybrid density functional, omegaB97X-D, to include empirical atom-atom dispersion corrections yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions.
Abstract: We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom–atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics it performs noticeably better. Relative to our previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

9,184 citations

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations

Journal ArticleDOI
Curtis Huttenhower1, Curtis Huttenhower2, Dirk Gevers2, Rob Knight3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.

8,410 citations

Journal ArticleDOI
TL;DR: In this article, the maximal statistical dependency criterion based on mutual information (mRMR) was proposed to select good features according to the maximal dependency condition. But the problem of feature selection is not solved by directly implementing mRMR.
Abstract: Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

8,078 citations


Authors

Showing all 28505 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Yi Cui2201015199725
Yi Chen2174342293080
Younan Xia216943175757
Hongjie Dai197570182579
Martin White1962038232387
David J. Schlegel193600193972
Gordon B. Mills1871273186451
Peidong Yang183562144351
Paul G. Richardson1831533155912
Michael I. Jordan1761016216204
Hyun-Chul Kim1764076183227
Richard S. Ellis169882136011
Derek R. Lovley16858295315
Zena Werb168473122629
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

91% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

91% related

Stanford University
320.3K papers, 21.8M citations

91% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022444
20213,390
20203,866
20193,381
20183,346