scispace - formally typeset
Search or ask a question
Institution

National Institute of Oceanography, India

FacilityPanjim, Goa, India
About: National Institute of Oceanography, India is a facility organization based out in Panjim, Goa, India. It is known for research contribution in the topics: Monsoon & Population. The organization has 4713 authors who have published 6927 publications receiving 174272 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An assay system was developed in which the effects of inhibitors of β-carotene biosynthesis in Dunaliella bardawil could be tested, and it was found that D. bardawsil can be induced to accumulate over 10% of its dry weight as β- carotene.
Abstract: An assay system was developed in which the effects of inhibitors of β-carotene biosynthesis in Dunaliella bardawil could be tested. Since D. bardawil can be induced to accumulate over 10% of its dry weight as β-carotene, it is particularly suitable for such studies. (...)

54 citations

Journal ArticleDOI
TL;DR: This first analysis of phytoplankton assemblages from the offshore Bay suggests that while there is predominance of only a few species, the Bay harbors very diverse diatom communities that seem to be syntrophic, non-competitive and co-habiting in the generally low nutrient, stratified surface waters.
Abstract: The microphytoplankton assemblages were studied from water samples collected at eight discrete depths in the top 120 m at five central (open ocean) and four western (shelf/slope region) locations in the Bay of Bengal. The Bay is a low-productive warm pool regime with poor inorganic nutrient inputs to its intensely stratified surface layer despite the very large riverine influx. In addition, the prolonged cloud cover has an adverse effect on the top 25–40 m, on primary production, chlorophyll concentration and phytoplankton assemblages. Microphytoplankton were the most abundant in the northern area of the Bay. A total of 153 phytoplankton species were identified during this study. The most abundant species (at least 1,800 individual cells belonging to a given species or ≥2% of the total counts of identified specimens) during this study were: Thalassiothrix longissima, Thalassiothrix fauenfeldii, Rhizosolenia styliformis, Nitzschia angularis, Thalassionema nitzschioides, Coscinodiscus radiatus, Chaetoceros eibenii, Skeletonema costatum, Coscinodiscus concinnus and Chaetoceros coarctatus. Similarly, there were 20 moderately abundant (≥0.5 but <2%) species. Thirty-three of the least abundant species (<0.5%) occurred at one station. Diatom species, T. fauenfeldii and T. longissima were ubiquitous in the study area. The exclusive occurrence of S. costatum in the northernmost stations suggests that it proliferates only in the low-salinity regions with adequate silica from the land inputs. Abundance of pennate diatoms was higher in the open Bay compared to that of centric diatoms in the more productive northern locations and the western Bay. There appears to be a basic difference between near shore flora and offshore flora. This first analysis of phytoplankton assemblages from the offshore Bay suggests that while there is predominance of only a few species, the Bay harbors very diverse diatom communities that seem to be syntrophic, non-competitive and co-habiting in the generally low nutrient, stratified surface waters.

54 citations

Journal ArticleDOI
TL;DR: It is shown that the dry, warm and dusty Red Sea Wind and Shamal Wind from the Middle-East override the moist oceanic Low-Level Jet (Findlater Jet) of the SW monsoon and transport large quantities of dust at heights between 2 km and 5 km over the Indian Peninsula.
Abstract: The importance of mineral dust and aerosols in the transfer of bio-essential elements to terrestrial and marine ecosystems far removed from the source region is well known. Aerosol concentrations measured at the surface over the west coast of India during the SW monsoon period (June to September) are usually very low as pristine maritime air from the Southern Indian Ocean blows over this region. However, we find very high levels of mineral dust and dust derived nutrients in rainwater collected during the SW monsoon period. We show that the dry, warm and dusty Red Sea Wind and Shamal Wind from the Middle-East override the moist oceanic Low-Level Jet (Findlater Jet) of the SW monsoon and transport large quantities of dust at heights between 2 km and 5 km over the Indian Peninsula. A substantial portion is the desert dust is scavenged and wet-deposited over the Western Ghats of India where it neutralizes the acidity of rainwater and provides substantial amounts of nutrients that have the potential to impact sensitive ecosystems in this region. After the Red Sea and Shamal Winds subside in September, the alkaline rainwater reverts to the acidic range due to soluble ions derived from local carbonaceous aerosols.

54 citations

Journal ArticleDOI
TL;DR: A sulphate-reducing bacterial strain isolated from the south-west coast of India resembling Desulfosarcina in its physiology was tested for its behaviour towards HgCl, CdSO and Pb and showed a general reduction in the inhibition of sulphide production in slurries as compared with pure culture of the isolate.

54 citations

Journal ArticleDOI
TL;DR: The CORDEX-CORE initiative was developed with the aim of producing homogeneous regional climate model (RCM) projections over domains world wide as discussed by the authors, with focus on several temperature, heat, wet and dry hazard indicators for present day and mid-century and far future time slices.
Abstract: The CORDEX-CORE initiative was developed with the aim of producing homogeneous regional climate model (RCM) projections over domains world wide. In its first phase, two RCMs were run at 0.22° resolution downscaling 3 global climate models (GCMs) from the CMIP5 program for 9 CORDEX domains and two climate scenarios, the RCP2.6 and RCP8.5. The CORDEX-CORE simulations along with the CMIP5 GCM ensemble and the most recently produced CMIP6 GCM ensemble are analyzed, with focus on several temperature, heat, wet and dry hazard indicators for present day and mid-century and far future time slices. The CORDEX-CORE ensemble shows a better performance than the driving GCMs for several hazard indices due to its higher spatial resolution. For the far future time slice the 3 ensembles project an increase in all temperature and heat indices analyzed under the RCP8.5 scenario. The largest increases are always shown by the CMIP6 ensemble, except for Tx > 35 °C, for which the CORDEX-CORE projects higher warming. Extreme wet and flood prone maxima are projected to increase by the RCM ensemble over the la Plata basin in South America, the Congo basin in Africa, east North America, north east Europe, India and Indochina, regions where a better performance is obtained, whereas the GCM ensembles show small or negligible signals. Compound hazard hotspots based on heat, drought and wet indicators are detected in each continent worldwide in region like Central America, the Amazon, the Mediterranean, South Africa and Australia, where a linear relation is shown between the heatwave and drought change signal, and region like Arabian peninsula, the central and south east Africa region (SEAF), the north west America (NWN), south east Asia, India, China and central and northern European regions (WCE, NEU) where the same linear relation is found for extreme precipitation and HW increases. Although still limited, the CORDEX-CORE initiative was able to produce high resolution climate projections with almost global coverage and can provide an important resource for impact assessment and climate service activities.

54 citations


Authors

Showing all 4731 results

NameH-indexPapersCitations
Amit Kumar65161819277
Muhammad Tahir65163623892
Shubha Sathyendranath6424618141
Anjan Chatterjee6127611675
Stephen E. Calvert6010812044
Michael D. Krom5913710846
Victor Smetacek5913519279
Nicola Casagli5839111786
Michael S. Longuet-Higgins5613215846
Baruch Rinkevich542498819
Jérôme Vialard521609094
Matthieu Lengaigne5114711510
José M. Carcione503469421
Antonio M. Pascoal493718905
Assaf Sukenik491257166
Network Information
Related Institutions (5)
IFREMER
12.3K papers, 468.8K citations

87% related

Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

87% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

86% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

86% related

Natural Environment Research Council
4.2K papers, 254.5K citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
202260
2021664
2020542
2019365
2018348