scispace - formally typeset
Search or ask a question
Institution

Vaughn College of Aeronautics and Technology

EducationNew York, New York, United States
About: Vaughn College of Aeronautics and Technology is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Gravitational microlensing & Planetary system. The organization has 727 authors who have published 708 publications receiving 14082 citations. The organization is also known as: College of Aeronautics.


Papers
More filters
Posted Content
TL;DR: In this article, a teaming method, proficiency aware multi-agent deep reinforcement learning (Mix-RL), was developed to guide ground and aerial cooperation by considering the best alignments between robot capabilities, task requirements, and environment conditions.
Abstract: A mixed aerial and ground robot team, which includes both unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs), is widely used for disaster rescue, social security, precision agriculture, and military missions. However, team capability and corresponding configuration vary since robots have different motion speeds, perceiving ranges, reaching areas, and resilient capabilities to the dynamic environment. Due to heterogeneous robots inside a team and the resilient capabilities of robots, it is challenging to perform a task with an optimal balance between reasonable task allocations and maximum utilization of robot capability. To address this challenge for effective mixed ground and aerial teaming, this paper developed a novel teaming method, proficiency aware multi-agent deep reinforcement learning (Mix-RL), to guide ground and aerial cooperation by considering the best alignments between robot capabilities, task requirements, and environment conditions. Mix-RL largely exploits robot capabilities while being aware of the adaption of robot capabilities to task requirements and environment conditions. Mix-RL's effectiveness in guiding mixed teaming was validated with the task "social security for criminal vehicle tracking".
Journal ArticleDOI
TL;DR: In this article, the authors describe a new implementation of the random choice method formulated for natural co-ordinates based on streamlines and normals, and compare theoretical and computed results for several different physical configurations.
Abstract: The random choice method has now been shown to be successfully extendible from the original one-dimensional unsteady formulation to inert high-speed flow fields which are steady and two-dimensional using Cartesian, axisymmetric and Lagrangian formulations. This paper deals with the description of a new implementation of the random choice method formulated for natural co-ordinates based on streamlines and normals. Comparisons between theoretical and computed results for several different physical configurations are presented.
Journal ArticleDOI
TL;DR: A novel industry case study is introduced to explore the differences between “traditional” multidisciplinary design optimization (MDO) and value-driven design (VDD) approaches to product family design and illustrates that the “ traditional” MDO formulation can find several promising solutions for the product family, but it fails to find solutions that maximize the value to the firm.
Abstract: Advanced product platform and product family design methods are needed to define and optimize the value they bring to a company. Maximizing platform commonality and individual product performance often fails to realize the most valuable product family during optimization; however, few examples exist in the literature to explore these trade-offs. This paper introduces a novel industry case study to explore the differences between “traditional” multidisciplinary design optimization (MDO) and value-driven design (VDD) approaches to product family design. The case study involves a family of five commercially-available washing machines and integrates multidisciplinary analyses, simulations, mathematical models, and response surface models to obtain ratings for individual product attributes. These attributes are then aggregated into a value function for the product family using a novel approach to estimate sales volume and a demand sensitivity curve derived from publicly available data. We then formulate and solve a “traditional” MDO product family design problem using a multi-objective genetic algorithm to minimize performance deviation and a product family penalty function. A novel VDD formulation is then introduced and solved to maximize the net present value (NPV) for the firm producing the family of products. Visualization and comparison of the results illustrate that the “traditional” MDO formulation can find several promising solutions for the product family, but it fails to find solutions that maximize the value to the firm. The results also provide a benchmark for researchers to explore alternative value function formulations and solution approaches for product family design using the novel industry case study.
Journal ArticleDOI
TL;DR: In this article, the authors discuss the various methods which could be adopted for encoding position signals related to the movement of a machine slide or leadscrew and describe in detail the digital absolute circuit chosen for further research.

Authors

Showing all 732 results

NameH-indexPapersCitations
Xiang Zhang1541733117576
Denis J. Sullivan6133214092
To. Saito511839392
Arthur H. Lefebvre411234896
Michele Meo402235557
Robin S. Langley402635601
Ning Qin372835011
Holger Babinsky332424068
B. S. Gaudi31642560
Philip J. Longhurst29802578
Michael Gaster27663998
Don Harris261292537
To. Saito25562362
John F. O'Connell22891763
Rade Vignjevic21841563
Network Information
Related Institutions (5)
Langley Research Center
37.6K papers, 821.6K citations

76% related

Technion – Israel Institute of Technology
79.3K papers, 2.6M citations

76% related

Northwestern Polytechnical University
56K papers, 657K citations

76% related

Beihang University
73.5K papers, 975.6K citations

75% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

74% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
20223
202145
202033
201934
201841