scispace - formally typeset
Search or ask a question
Institution

Victor Chang Cardiac Research Institute

NonprofitSydney, New South Wales, Australia
About: Victor Chang Cardiac Research Institute is a nonprofit organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Mechanosensitive channels & Heart failure. The organization has 708 authors who have published 1599 publications receiving 70035 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Although the feasibility and acceptability of this strategy to support self-monitoring and improve self-care behaviour was demonstrated, self-reported adherence was unreliable; newer technologies may offer better assessment of adherence.
Abstract: Background:Adherence to self-care recommendations is associated with improved patient outcomes and improved quality of life for people living with heart failure. The Home-Heart-Walk (HHW) is an intervention to promote physical activity adapting the elements of a six minute walk test, a reliable and valid measure. This adaptation was designed to support self-monitoring of physical functioning and promote the self-care of people with heart failure. The primary outcome of the Home-Heart-Walk was perceived physical functioning and the secondary outcomes were six-minute walk test distance, health related quality of life, self-care behaviour, self-efficacy and physical activity level.Methods:A multicentre randomized controlled trial. Participants (N=132) were recruited from three academic hospitals in Sydney, Australia. Participants were randomized to either the Home-Heart-Walk group or the control group. Perceived physical functioning, health related quality of life, self-care behaviour, exercise self-efficacy...

20 citations

Journal ArticleDOI
24 Mar 2017-Genes
TL;DR: Several novel therapies are outlined here, and the unprecedented success of phosphorodiamidate morpholino oligomers (PMOs) in preclinical and clinical studies is overviewed.
Abstract: Duchenne muscular dystrophy (DMD) is caused by defects in the DMD gene and results in progressive wasting of skeletal and cardiac muscle due to an absence of functional dystrophin. Cardiomyopathy is prominent in DMD patients, and contributes significantly to mortality. This is particularly true following respiratory interventions that reduce death rate and increase ambulation and consequently cardiac load. Cardiomyopathy shows an increasing prevalence with age and disease progression, and over 95% of patients exhibit dilated cardiomyopathy by the time they reach adulthood. Development of the myopathy is complex, and elevations in intracellular calcium, functional muscle ischemia, and mitochondrial dysfunction characterise the pathophysiology. Current therapies are limited to treating symptoms of the disease and there is therefore an urgent need to treat the underlying genetic defect. Several novel therapies are outlined here, and the unprecedented success of phosphorodiamidate morpholino oligomers (PMOs) in preclinical and clinical studies is overviewed.

19 citations

Journal ArticleDOI
TL;DR: A bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data supports the hypothesis that combinatorial TF motif patterns are cell-type specific.
Abstract: It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs – a motif grammar – located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

19 citations

Journal ArticleDOI
TL;DR: Transglutaminases effect posttranslational modification of proteins by amine incorporation, or stabilization of protein assemblies by their cross-linking, which profoundly influence critical biological processes such as blood clotting and protection from infection and dehydration by establishing the barrier function of skin.
Abstract: Transglutaminases are a family of calcium- and thiol-dependent acyl transferases that catalyze the formation of an amide bond between the gamma-carboxamide groups of peptide-bound glutamine residues and the primary amino groups in various compounds, including the epsilon-amino group of lysines in certain proteins. As a result, these enzymes effect posttranslational modification of proteins by amine incorporation, or stabilization of protein assemblies by their cross-linking; such actions profoundly influence critical biological processes such as blood clotting and protection from infection and dehydration by establishing the barrier function of skin. In addition, transglutaminases have other more diverse actions, including involvement in signaling by the superfamily of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) in one of three ways: (i) through actions as guanosine triphosphate-binding proteins that activate intracellular effectors, such as phospholipase C; (ii) by cross-linking GPCR monomers to enhance signaling as a result of covalent dimer formation; or (iii) by interacting with an apparent growth inhibitory orphan GPCR, GPR56, to limit metastatic spread of melanoma cells. The implications of these receptor-coupled actions of transglutaminases are discussed.

19 citations

Journal ArticleDOI
01 Dec 2016-Diabetes
TL;DR: It is concluded that vascular insulin resistance in type 2 diabetes contributes to the upregulation of CITED2, which impairs HIF signaling and endothelial proangiogenic function.
Abstract: In patients with atherosclerotic complications of diabetes, impaired neovascularization of ischemic tissue in the myocardium and lower limb limits the ability of these tissues to compensate for poor perfusion. We identified 10 novel insulin-regulated genes, among them Adm, Cited2, and Ctgf, which were downregulated in endothelial cells by insulin through FoxO1. CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), which was downregulated by insulin by up to 54%, is an important negative regulator of hypoxia-inducible factor (HIF) and impaired HIF signaling is a key mechanism underlying the impairment of angiogenesis in diabetes. Consistent with impairment of vascular insulin action, CITED2 was increased in cardiac endothelial cells from mice with diet-induced obesity and from db/db mice and was 3.8-fold higher in arterial tissue from patients with type 2 diabetes than control subjects without diabetes. CITED2 knockdown promoted endothelial tube formation and endothelial cell proliferation, whereas CITED2 overexpression impaired HIF activity in vitro. After femoral artery ligation, induction of an endothelial-specific HIF target gene in hind limb muscle was markedly upregulated in mice with endothelial cell deletion of CITED2, suggesting that CITED2 can limit HIF activity in vivo. We conclude that vascular insulin resistance in type 2 diabetes contributes to the upregulation of CITED2, which impairs HIF signaling and endothelial proangiogenic function.

19 citations


Authors

Showing all 728 results

NameH-indexPapersCitations
Bruce D. Walker15577986020
Stefanie Dimmeler14757481658
Matthias W. Hentze11031941879
Roland Stocker9233134364
Richard P. Harvey8340327060
Michael F. O'Rourke8145135355
Robert Terkeltaub8028421034
Robert M. Graham6931916342
Sunil Gupta6944033856
Anne Keogh6433720268
Filip K. Knop6143713614
Peter S. Macdonald5745512988
Boris Martinac5624514121
Carolyn L. Geczy551878987
Christopher J. Ormandy541318757
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

87% related

National Institutes of Health
297.8K papers, 21.3M citations

87% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

87% related

Baylor College of Medicine
94.8K papers, 5M citations

87% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202220
2021157
2020141
2019122
201897