scispace - formally typeset
Search or ask a question
Institution

Victor Chang Cardiac Research Institute

NonprofitSydney, New South Wales, Australia
About: Victor Chang Cardiac Research Institute is a nonprofit organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Mechanosensitive channels & Heart failure. The organization has 708 authors who have published 1599 publications receiving 70035 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An update on the diagnosis, aetiology and management of these important disorders that overwhelmingly affect women, including spontaneous coronary artery dissection and fibromuscular dysplasia, is provided.
Abstract: The burden of cardiovascular disease in women is being increasingly appreciated. Nevertheless, both clinicians and the general public are largely unaware that cardiovascular disease is the leading cause of death worldwide in women in all countries and that outcomes after a heart attack are worse for women than men. Of note, certain types of cardiovascular disease have a predilection for women, including spontaneous coronary artery dissection (SCAD) and fibromuscular dysplasia (FMD). Although uncommon, SCAD is being increasingly recognised as the cause of an acute coronary syndrome (ACS) and can recur. It is a potentially fatal, under-diagnosed condition that affects relatively young women, who often have few traditional risk factors, and is the commonest cause of a myocardial infarction associated with pregnancy. In contrast, FMD often remains silent but when manifested can also cause major sequelae, including renal infarction, stroke, cervical artery dissection and gut infarction. Here we provide an update on the diagnosis, aetiology and management of these important disorders that overwhelmingly affect women.

12 citations

Journal ArticleDOI
TL;DR: It is shown that WNT5a is essential for the establishment of a cohesive epithelium in the developing CP, and it is found that in its absence all CPs are substantially reduced in size and complexity and fail to expand into the ventricles.
Abstract: The choroid plexus (CP) is the predominant supplier of cerebral spinal fluid (CSF) and the site of the blood-CSF barrier and is thus essential for brain development and central nervous system homeostasis. Despite these crucial roles, our understanding of the molecular and cellular processes giving rise to the CPs within the ventricles of the mammalian brain is very rudimentary. Here, we identify WNT5a as an important regulator of CP development, where it acts as a pivotal factor driving CP epithelial morphogenesis in all ventricles. We show that WNT5a is essential for the establishment of a cohesive epithelium in the developing CP. We find that in its absence all CPs are substantially reduced in size and complexity and fail to expand into the ventricles. Severe defects were observed in the epithelial cytoarchitecture of all Wnt5a-/- CPs, exemplified by loss of apicobasally polarized morphology and detachment from the ventricular surface and/or basement membrane. We also present evidence that the WNT5a receptor, RYK, and the RHOA kinase, ROCK, are required for normal CP epithelial morphogenesis. Our study, therefore, reveals important insights into the molecular and cellular mechanisms governing CP development.

12 citations

Journal ArticleDOI
TL;DR: High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site.
Abstract: Ancestral protein reconstruction allows the resurrection and characterization of ancient proteins based on computational analyses of sequences of modern-day proteins. Unfortunately, many protein families are highly divergent and not suitable for sequence-based reconstruction approaches. This limitation is exemplified by the antigen receptors of jawed vertebrates (B- and T-cell receptors), heterodimers formed by pairs of Ig domains. These receptors are believed to have evolved from an extinct homodimeric ancestor through a process of gene duplication and diversification; however molecular evidence has so far remained elusive. Here, we use a structural approach and laboratory evolution to reconstruct such molecules and characterize their interaction with antigen. High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site. Our results provide structural evidence in support of long-held theories concerning the evolution of antigen receptors, and provide a blueprint for the experimental reconstruction of protein ancestry in the absence of phylogenetic evidence.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of hypertrophic cardiomyopathy and their contribution to the cardiac dysfunction.

12 citations

Journal ArticleDOI
TL;DR: Examination of the density of specific cell subpopulations demonstrated that most combinations of inhibitors that included oxATP preserved NG2+ non-oligodendroglial cells, but preservation of astrocytes and neurons required additional inhibitors, indicating that following H2O2 insult, limiting intracellular Ca2+ entry via P2X7R is generally associated with increased cell viability.

12 citations


Authors

Showing all 728 results

NameH-indexPapersCitations
Bruce D. Walker15577986020
Stefanie Dimmeler14757481658
Matthias W. Hentze11031941879
Roland Stocker9233134364
Richard P. Harvey8340327060
Michael F. O'Rourke8145135355
Robert Terkeltaub8028421034
Robert M. Graham6931916342
Sunil Gupta6944033856
Anne Keogh6433720268
Filip K. Knop6143713614
Peter S. Macdonald5745512988
Boris Martinac5624514121
Carolyn L. Geczy551878987
Christopher J. Ormandy541318757
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

87% related

National Institutes of Health
297.8K papers, 21.3M citations

87% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

87% related

Baylor College of Medicine
94.8K papers, 5M citations

87% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202220
2021157
2020141
2019122
201897