scispace - formally typeset
Search or ask a question
Institution

Victor Chang Cardiac Research Institute

NonprofitSydney, New South Wales, Australia
About: Victor Chang Cardiac Research Institute is a nonprofit organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Mechanosensitive channels & Heart failure. The organization has 708 authors who have published 1599 publications receiving 70035 citations.


Papers
More filters
Journal ArticleDOI
05 Nov 2019-ACS Nano
TL;DR: It is proposed that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.
Abstract: PIEZO1 is a bona fide mammalian mechanically activated channel that has recently been shown to provide instructive cues during neuronal specification, texture sensing, and cell migration where mechanical inputs arise at the interface between the cells and their substrate. Here, we have investigated whether the mechanical properties of the substrate alone can modulate PIEZO1 activity, in response to exogenously applied stimuli, using elastomeric pillar arrays as force transducers. This methodology enables application of mechanical stimuli at cell-substrate contact points by deflecting individual pili. We found that PIEZO1 is more sensitive to substrate deflections with increased spacing between pili (reducing surface roughness) but not on more stiff substrates. Cellular contractility was required for the sensitization of PIEZO1 but was not essential for PIEZO1 activation. Computational modeling suggested that the membrane tension changes generated by pillar deflections were below the membrane tension changes that arise from cellular indentation or high-speed pressure clamp assays. We conclude that the mechanics of the microenvironment can modulate PIEZO1 signaling, highlighting the importance of studying channel activation directly at the cell-substrate interface. We propose that forces arising from actin-mediated contractility and within the lipid bilayer act synergistically to regulate PIEZO1 activation by stimuli applied at contacts between cells and their surroundings.

36 citations

Journal ArticleDOI
TL;DR: The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.
Abstract: The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age.

36 citations

Journal ArticleDOI
TL;DR: Comparison with yeast suggests that in higher eukaryotes, stronger and more numerous activating elements have been made necessary by the formation of a powerfully repressive nuclear compartment during cell differentiation.

36 citations

Journal ArticleDOI
TL;DR: It is shown that MPO activity can be assessed using hydroethidine (HE), a probe commonly employed for the detection of superoxide, and 2-chloroethidium (2-Cl-E+) is a useful additional marker of myeloperoxidase activity.

36 citations

Journal ArticleDOI
TL;DR: The molecular basis for this incomplete inhibition of macroscopic hERG currents by high concentrations of CnErg1 is probed and a bimolecular binding scheme that incorporates an initial encounter complex and permits normal ion conduction was able to completely reproduce both the kinetics and steady-state level of Cng1-hERG binding.

36 citations


Authors

Showing all 728 results

NameH-indexPapersCitations
Bruce D. Walker15577986020
Stefanie Dimmeler14757481658
Matthias W. Hentze11031941879
Roland Stocker9233134364
Richard P. Harvey8340327060
Michael F. O'Rourke8145135355
Robert Terkeltaub8028421034
Robert M. Graham6931916342
Sunil Gupta6944033856
Anne Keogh6433720268
Filip K. Knop6143713614
Peter S. Macdonald5745512988
Boris Martinac5624514121
Carolyn L. Geczy551878987
Christopher J. Ormandy541318757
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

87% related

National Institutes of Health
297.8K papers, 21.3M citations

87% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

87% related

Baylor College of Medicine
94.8K papers, 5M citations

87% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202220
2021157
2020141
2019122
201897