scispace - formally typeset
Search or ask a question
Institution

Victor Chang Cardiac Research Institute

NonprofitSydney, New South Wales, Australia
About: Victor Chang Cardiac Research Institute is a nonprofit organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Mechanosensitive channels & Heart failure. The organization has 708 authors who have published 1599 publications receiving 70035 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Six young men diagnosed with systolic hypertension had normal carotid pressureWave contours, normal synthesized aortic pressure wave contours and normal diastolic and mean pressures in upper limb arteries, but were not truly hypertensive.
Abstract: Six young men diagnosed with systolic hypertension had normal carotid pressure wave contours, normal synthesized aortic pressure wave contours and normal diastolic and mean pressures in upper limb arteries. Elevated brachial systolic pressure was caused by a high narrow systolic peak of the pressure wave. This was attributed to amplification of the pressure wave between the ascending aorta and upper limb (radial and brachial) arteries that is associated with attainment of full body length and very distensible arteries. These young men were not truly hypertensive. Exaggeration of the upper limb systolic peak represented an extreme of the normal pressure wave pattern in youth, where amplification is greater than in childhood or in older subjects. This phenomenon accounts for the rapid increase in systolic pressure between the ages of 5 and 20 years, and the relative plateau in systolic pressure between the ages of 20 and 45 years that is seen in population studies.

149 citations

Journal ArticleDOI
11 Jun 2010-Cell
TL;DR: In this article, the authors present crystallographic evidence of interdependent gates in the conduction pathway and reveal the mechanism of polyamine block, where reorientation of the intracellular domains, concomitant with activation, instigates polyamine release from the binding sites to block the permeation pathway.

148 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Cl− ion channel blockers known to block NCC27 led to arrest of CHO‐K1 cells in the G2/M stage of the cell cycle, the same stage at which this ion channel is selectively expressed on the plasma membrane.
Abstract: 1NCC27 is a nuclear chloride ion channel, identified in the PMA-activated U937 human monocyte cell line. NCC27 mRNA is expressed in virtually all cells and tissues and the gene encoding NCC27 is also highly conserved. Because of these factors, we have examined the hypothesis that NCC27 is involved in cell cycle regulation. 2Electrophysiological studies in Chinese hamster ovary (CHO-K1) cells indicated that NCC27 chloride conductance varied according to the stage of the cell cycle, being expressed only on the plasma membrane of cells in G2/M phase. 3We also demonstrate that Cl− ion channel blockers known to block NCC27 led to arrest of CHO-K1 cells in the G2/M stage of the cell cycle, the same stage at which this ion channel is selectively expressed on the plasma membrane. 4These data strongly support the hypothesis that NCC27 is involved, in some as yet undetermined manner, in regulation of the cell cycle.

146 citations

Journal ArticleDOI
TL;DR: In HIV-1 infection, the decrease in let-7 miRNAs may result in an increase in IL-10 from CD4+ T cells and provide the virus with an important survival advantage by manipulating the host immune response.
Abstract: MicroRNAs (miRNAs) are ∼22-nt small RNAs that are important regulators of mRNA turnover and translation. Recent studies have shown the importance of the miRNA pathway in HIV-1 infection, particularly in maintaining latency. Our initial in vitro studies demonstrated that HIV-1-infected HUT78 cells expressed significantly higher IL-10 levels compared with uninfected cultures. IL-10 plays an important role in the dysregulated cytotoxic T cell response to HIV-1, and in silico algorithms suggested that let-7 miRNAs target IL10 mRNA. In a time course experiment, we demonstrated that let-7 miRNAs fall rapidly following HIV-1 infection in HUT78 cells with concomitant rises in IL-10. To show a direct link between let-7 and IL-10, forced overexpression of let-7 miRNAs resulted in significantly reduced IL-10 levels, whereas inhibition of the function of these miRNAs increased IL-10. To demonstrate the relevance of these results, we focused our attention on CD4(+) T cells from uninfected healthy controls, chronic HIV-1-infected patients, and long-term nonprogressors. We characterized miRNA changes in CD4(+) T cells from these three groups and demonstrated that let-7 miRNAs were highly expressed in CD4(+) T cells from healthy controls and let-7 miRNAs were significantly decreased in chronic HIV-1 infected compared with both healthy controls and long-term nonprogressors. We describe a novel mechanism whereby IL-10 levels can be potentially modulated by changes to let-7 miRNAs. In HIV-1 infection, the decrease in let-7 miRNAs may result in an increase in IL-10 from CD4(+) T cells and provide the virus with an important survival advantage by manipulating the host immune response.

145 citations

Journal ArticleDOI
TL;DR: This study identifies putative target genes of miRNAs miR-9 and 181c, which may function in brain homeostasis and disease pathogenesis, and expands the repertoire of miRNA target genes by identifying the 3′ untranslated regions (3′ UTRs) of TGFBI, TRIM2, SIRT1 and BTBD3 as being repressed by miR -181c, either alone or in combination.
Abstract: MicroRNAs (miRNAs) are small non-coding RNA regulators of protein synthesis that are essential for normal brain development and function. Their profiles are significantly altered in neurodegenerative diseases such as Alzheimer's disease (AD) that is characterized by amyloid-β (Aβ) and tau deposition in brain. How deregulated miRNAs contribute to AD is not understood, as their dysfunction could be both a cause and a consequence of disease. To address this question we had previously profiled miRNAs in models of AD. This identified miR-9 and -181c as being down-regulated by Aβ in hippocampal cultures. Interestingly, there was a remarkable overlap with those miRNAs that are deregulated in Aβ-depositing APP23 transgenic mice and in human AD tissue. While the Aβ precursor protein APP itself is a target of miRNA regulation, the challenge resides in identifying further targets. Here, we expand the repertoire of miRNA target genes by identifying the 3' untranslated regions (3' UTRs) of TGFBI, TRIM2, SIRT1 and BTBD3 as being repressed by miR-9 and -181c, either alone or in combination. Taken together, our study identifies putative target genes of miRNAs miR-9 and 181c, which may function in brain homeostasis and disease pathogenesis.

144 citations


Authors

Showing all 728 results

NameH-indexPapersCitations
Bruce D. Walker15577986020
Stefanie Dimmeler14757481658
Matthias W. Hentze11031941879
Roland Stocker9233134364
Richard P. Harvey8340327060
Michael F. O'Rourke8145135355
Robert Terkeltaub8028421034
Robert M. Graham6931916342
Sunil Gupta6944033856
Anne Keogh6433720268
Filip K. Knop6143713614
Peter S. Macdonald5745512988
Boris Martinac5624514121
Carolyn L. Geczy551878987
Christopher J. Ormandy541318757
Network Information
Related Institutions (5)
Scripps Research Institute
32.8K papers, 2.9M citations

87% related

National Institutes of Health
297.8K papers, 21.3M citations

87% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

87% related

Baylor College of Medicine
94.8K papers, 5M citations

87% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202220
2021157
2020141
2019122
201897