scispace - formally typeset
Search or ask a question

Showing papers by "Victor Chang Cardiac Research Institute published in 2014"


Journal ArticleDOI
TL;DR: This work shows transferability for a unifying T1 mapping methodology in a multicenter setting and provides reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.
Abstract: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. Healthy subjects (n = 102; mean age 41 years (range 17–83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. In healthy controls, mean native T1 values were 950 ± 21 msec at 1.5 T and 1052 ± 23 at 3 T. λ and ECV values were 0.44 ± 0.06 and 0.25 ± 0.04 at 1.5 T, and 0.44 ± 0.07 and 0.26 ± 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.

281 citations


Journal ArticleDOI
08 May 2014-Cell
TL;DR: It is shown that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes, suggesting persistence of carduomyocyte proliferative capacity beyond the perinatal period.

249 citations


Journal ArticleDOI
TL;DR: The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.
Abstract: Rationale: Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment, but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective: To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results: High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical mesenchymal stem cell and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. While genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, T-box 20, caused marked myocardial dysmorphology and perturbations in scar formation on myocardial infarction. Conclusions: The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.

198 citations


Journal ArticleDOI
TL;DR: It is proposed that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation, which predates the germline functions of the pathway in modern animals.
Abstract: The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals.

130 citations


Journal ArticleDOI
TL;DR: Any capacity to modulate HMOX1 in cardiovascular and metabolic diseases should be tempered with an appreciation that H MOX1 may have an impact on cancer, and the potential for heme catabolism end products, such as carbon monoxide, to amplify the HMOx1 stress response should be considered.
Abstract: Significance: Heme oxygenase-1 (HMOX1) plays a critical role in the protection of cells, and the inducible enzyme is implicated in a spectrum of human diseases. The increasing prevalence of cardiovascular and metabolic morbidities, for which current treatment approaches are not optimal, emphasizes the necessity to better understand key players such as HMOX1 that may be therapeutic targets. Recent Advances: HMOX1 is a dynamic protein that can undergo post-translational and structural modifications which modulate HMOX1 function. Moreover, trafficking from the endoplasmic reticulum to other cellular compartments, including the nucleus, highlights that HMOX1 may play roles other than the catabolism of heme. Critical Issues: The ability of HMOX1 to be induced by a variety of stressors, in an equally wide variety of tissues and cell types, represents an obstacle for the therapeutic exploitation of the enzyme. Any capacity to modulate HMOX1 in cardiovascular and metabolic diseases should be tempered wit...

123 citations


Journal ArticleDOI
TL;DR: DCD hearts subjected to warm ischemic times of 20–40 min prior to flushing with Celsior (C) solution demonstrate complete recovery up to 20‐min WIT after which there is rapid loss of viability.

112 citations


Journal ArticleDOI
TL;DR: The ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells are discussed.

111 citations


Journal ArticleDOI
18 Feb 2014-eLife
TL;DR: Measurements of the distance changes on liposome-reconstituted MscL transmembrane α-helices, using a ‘virtual sorting’ single-molecule fluorescence energy transfer confirm that the channel opens via the helix-tilt model and the open pore reaches 2.8 nm in diameter.
Abstract: The mechanosensitive channel of large conductance, which serves as a model system for mechanosensitive channels, has previously been crystallized in the closed form, but not in the open form. Ensemble measurements and electrophysiological sieving experiments show that the open-diameter of the channel pore is >25 A, but the exact size and whether the conformational change follows a helix-tilt or barrel-stave model are unclear. Here we report measurements of the distance changes on liposome-reconstituted MscL transmembrane α-helices, using a 'virtual sorting' single-molecule fluorescence energy transfer. We observed directly that the channel opens via the helix-tilt model and the open pore reaches 2.8 nm in diameter. In addition, based on the measurements, we developed a molecular dynamics model of the channel structure in the open state which confirms our direct observations. DOI: http://dx.doi.org/10.7554/eLife.01834.001.

110 citations


Journal ArticleDOI
TL;DR: This review discusses aspects of ROS in relation to replicative ageing in the model organism Saccharomyces cerevisiae, with reference to ROS generated in cells; cellular responses to oxidative stress; and how cells maintain redox homeostasis in different cellular compartments.
Abstract: Ageing cells undergo changes in redox homeostasis and acquire high levels of reactive oxygen species (ROS). Because accumulation of ROS involves a change in redox state of cells, functions that are involved in setting redox and maintaining redox homeostasis are very relevant to an understanding of the possible roles of redox homeostasis and ROS in ageing. This review discusses these aspects of ROS in relation to replicative ageing in the model organism Saccharomyces cerevisiae, with reference to ROS generated in cells; cellular responses to oxidative stress; and how cells maintain redox homeostasis in different cellular compartments. It also considers when ROS generation begins as cells age, which ROS species are relevant to ageing and which cellular compartments and processes may contribute ROS to the ageing process. The discussion also covers the heterogeneity of cells with respect to ROS accumulation at particular cell ages, and the possibility of testing the oxidative theory of ageing in yeast cells.

104 citations


Journal ArticleDOI
TL;DR: Differences that can be related to conformational changes in the Vo complex triggered by ATP binding are revealed by isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation.
Abstract: Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.

93 citations


Journal ArticleDOI
TL;DR: When multiple relatives are affected by CHD, a gene panel-based approach may identify its cause in up to 31% of families, which has implications for clinical care and future family planning.

Journal ArticleDOI
TL;DR: The mechanisms and consequences of degradation of tryptophan (Trp) in the placenta are discussed, focusing mainly on the role of indoleamine 2,3-dioxygenase-1 (IDO1), one of three enzymes catalyzing the first step of the kynurenine pathway of Trp degradation.
Abstract: This review discusses the mechanisms and consequences of degradation of tryptophan (Trp) in the placenta, focussing mainly on the role of indoleamine 2,3-dioxygenase-1 (IDO1), one of three enzymes catalyzing the first step of the kynurenine pathway of Trp degradation. IDO1 has been implicated in regulation of fetomaternal tolerance in the mouse. Local depletion of Trp and/or the presence of metabolites of the kynurenine pathway mediate immunoregulation and exert antimicrobial functions. In addition to the decidual glandular epithelium, IDO1 is localized in the vascular endothelium of the villous chorion and also in the endothelium of spiral arteries of the decidua. Possible consequences of IDO1-mediated catabolism of Trp in the endothelium encompass antimicrobial activity and immunosuppression, as well as relaxation of the placental vasotonus, thereby contributing to placental perfusion and growth of both placenta and fetus. It remains to be evaluated whether other enzymes mediating Trp oxidation, such as indoleamine 2,3-dioxygenase-2, Trp 2,3-dioxygenase, and Trp hydroxylase-1 are of relevance to the biology of the placenta.

Journal ArticleDOI
TL;DR: Across both genders, increasing body size is characterized by a modest degree of aortic dilatation, even in the absence of traditional cardiovascular risk factors, in a large group of healthy subjects with no vascular risk factors.
Abstract: Background Cardiovascular magnetic resonance (CMR) is regarded as the gold standard for clinical assessment of the aorta, but normal dimensions are usually referenced to echocardiographic and computed tomography data and no large CMR normal reference range exists. As a result we aimed to 1) produce a normal CMR reference range of aortic diameters and 2) investigate the relationship between regional aortic size and body surface area (BSA) in a large group of healthy subjects with no vascular risk factors.

Journal ArticleDOI
TL;DR: The role of thyroid hormone in postnatal cardiac development is reviewed, given recent insights into its role in stimulating a burst of cardiomyocyte proliferation in the murine heart in preadolescence; a response required to meet the massive increase in circulatory demand predicated by an almost quadrupling of body weight during a period of about 21 days from birth to adolescence.

Journal ArticleDOI
TL;DR: The concerted movement of subunits within the complex might provide means of regulation and information transfer between distant parts of rotary ATPases thereby fine tuning these molecular machines to their cellular environment, while optimizing their efficiency.

Journal ArticleDOI
TL;DR: Thorough testing of bioinformatics software is important in delivering clinical genomic medicine and this paper demonstrates a different framework to test a program that involves checking its properties, thus greatly expanding the number and repertoire of test cases the authors can apply in practice.
Abstract: Bioinformatics software quality assurance is essential in genomic medicine. Systematic verification and validation of bioinformatics software is difficult because it is often not possible to obtain a realistic "gold standard" for systematic evaluation. Here we apply a technique that originates from the software testing literature, namely Metamorphic Testing (MT), to systematically test three widely used short-read sequence alignment programs. MT alleviates the problems associated with the lack of gold standard by checking that the results from multiple executions of a program satisfy a set of expected or desirable properties that can be derived from the software specification or user expectations. We tested BWA, Bowtie and Bowtie2 using simulated data and one HapMap dataset. It is interesting to observe that multiple executions of the same aligner using slightly modified input FASTQ sequence file, such as after randomly re-ordering of the reads, may affect alignment results. Furthermore, we found that the list of variant calls can be affected unless strict quality control is applied during variant calling. Thorough testing of bioinformatics software is important in delivering clinical genomic medicine. This paper demonstrates a different framework to test a program that involves checking its properties, thus greatly expanding the number and repertoire of test cases we can apply in practice.

Journal ArticleDOI
TL;DR: This analysis of Twitter conversations during a recent scientific meeting highlights the significance and place of social media within research dissemination and collaboration and researchers and clinicians should consider using this technology to enhance timely communication of findings.


Journal ArticleDOI
TL;DR: The findings suggest that concepts of G × E interaction in risk of schizophrenia should be elaborated to multiple interactions that involve individual genes interacting with diverse biological and psychosocial environmental factors over early life, to differentially influence particular domains of psychopathology, sometimes over specific stages of development.

Journal ArticleDOI
TL;DR: It is shown that potential gradients >~150 mV induce membrane defects that permit the insertion of pore-forming peptides, and the novel (to the authors' knowledge) use of real-time modeling of conventional low-voltage alternating-current impedance spectroscopy to identify whether the conduction arising from the inserting of a polypeptide is uniform or heterogeneous on scales of nanometers to micrometers across the membrane.

Journal ArticleDOI
TL;DR: The results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers, and show the limitations of Laplace’s law for estimation of tension within a patch membrane.
Abstract: The lipid bilayer plays a crucial role in gating of mechanosensitive (MS) channels. Hence it is imperative to elucidate the rheological properties of lipid membranes. Herein we introduce a framework to characterize the mechanical properties of lipid bilayers by combining micropipette aspiration (MA) with theoretical modeling. Our results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers. The computational results also indicate that unlike the uniform bilayer tension estimated by Laplace’s law, bilayer tension is not uniform across the membrane patch area. Instead, the highest tension is seen at the apex of the patch and the lowest tension is encountered near the pipette wall. More importantly, there is only a negligible difference between the stress profiles of the outer and inner monolayers in the cell-attached configuration, whereas a substantial difference (∼30%) is observed in the excised configuration. Our results have far-reaching consequences for the biophysical studies of MS channels and ion channels in general, using the patch-clamp technique, and begin to unravel the difference in activity seen between MS channels in different experimental paradigms.

Journal ArticleDOI
01 Feb 2014-Diabetes
TL;DR: It is reported that high glucose–mediated overexpression of TXNIP induces a widespread impairment in endothelial cell (EC) function and survival by reducing VEGF production and sensitivity to V EGF action, findings that are rescued by silencing TXNip with small interfering RNA.
Abstract: Impaired angiogenesis in ischemic tissue is a hallmark of diabetes. Thioredoxin-interacting protein (TXNIP) is an exquisitely glucose-sensitive gene that is overexpressed in diabetes. As TXNIP modulates the activity of the key angiogenic cytokine vascular endothelial growth factor (VEGF), we hypothesized that hyperglycemia-induced dysregulation of TXNIP may play a role in the pathogenesis of impaired angiogenesis in diabetes. In the current study, we report that high glucose–mediated overexpression of TXNIP induces a widespread impairment in endothelial cell (EC) function and survival by reducing VEGF production and sensitivity to VEGF action, findings that are rescued by silencing TXNIP with small interfering RNA. High glucose–induced EC dysfunction was recapitulated in normal glucose conditions by overexpressing either TXNIP or a TXNIP C247S mutant unable to bind thioredoxin, suggesting that TXNIP effects are largely independent of thioredoxin activity. In streptozotocin-induced diabetic mice, TXNIP knockdown to nondiabetic levels rescued diabetes-related impairment of angiogenesis, arteriogenesis, blood flow, and functional recovery in an ischemic hindlimb. These findings were associated with in vivo restoration of VEGF production to nondiabetic levels. These data implicate a critical role for TXNIP in diabetes-related impairment of ischemia-mediated angiogenesis and identify TXNIP as a potential therapeutic target for the vascular complications of diabetes.

Journal ArticleDOI
TL;DR: This review surveys recent advances in the field and discusses current understanding of the endogenous mechanisms of cardiac regeneration in zebrafish, which is arguably the best characterized with respect to cardiac regenerative responses.

Journal ArticleDOI
TL;DR: The various reported stem and progenitor cell populations in mammalian hearts are documented and the current state of knowledge on their origins and lineage capabilities are discussed.

Journal ArticleDOI
TL;DR: Evidence is provided that maternal undernutrition around the time of conception induces changes in the expression of microRNAs, which may play a role in altering the abundance of the key insulin-signaling molecules in skeletal muscle and in the association between PCUN undernutrition and insulin resistance in adult life.
Abstract: Maternal undernutrition around the time of conception is associated with an increased risk of insulin resistance in adulthood. We determined the effect of maternal undernutrition in the periconceptional period (PCUN, i.e., 60 days prior to 6 days after conception) and the preimplantation period (PIUN, i.e., 0–6 days after conception) on mRNA expression and protein abundance of key insulin-signaling molecules as well as the global microRNA expression in quadriceps muscle of singleton and twin fetal sheep in late gestation. In singleton fetuses, exposure to PCUN resulted in lower protein abundance of PIK3CB (P , 0.01), PRKCZ (P , 0.05), and pPRKCZ (Thr410) (P , 0.05) in skeletal muscle compared to controls. In PIUN singletons, there was a higher protein abundance of IRS1 (P , 0.05), PDPK1 (P , 0.05), and SLC2A4 (P , 0.05) compared to controls. In twins, PCUN resulted in higher protein abundance of IRS1 (P , 0.05), AKT2 (P , 0.05), PDPK1 (P , 0.05), and PRKCZ (P , 0.001), while PIUN also resulted in higher protein abundance of IRS1 (P , 0.05), PRKCZ (P , 0.001), and SLC2A4 (P , 0.05) in fetal muscle compared to controls. There were specific patterns of the types and direction of changes in the expression of 22 microRNAs in skeletal muscle after exposure to PCUN or PIUN and clear differences in these patterns between singleton and twin pregnancies. These findings provide evidence that maternal undernutrition around the time of conception induces changes in the expression of microRNAs, which may play a role in altering the abundance of the key insulin-signaling molecules in skeletal muscle and in the association between PCUN undernutrition and insulin resistance in adult life. embryo, fetus, metabolism, nutrition, oocyte

Journal ArticleDOI
TL;DR: A correlation between QT interval prolongation and T-wave notching in LQTS2 patients is reported and a novel computational framework is used to investigate how individual ionic currents, as well as cellular and tissue level factors, contribute to notched T waves.
Abstract: The heart rhythm disorder long QT syndrome (LQTS) can result in sudden death in the young or remain asymptomatic into adulthood. The features of the surface electrocardiogram (ECG), a measure of the electrical activity of the heart, can be equally variable in LQTS patients, posing well-described diagnostic dilemmas. Here we report a correlation between QT interval prolongation and T-wave notching in LQTS2 patients and use a novel computational framework to investigate how individual ionic currents, as well as cellular and tissue level factors, contribute to notched T waves. Furthermore, we show that variable expressivity of ECG features observed in LQTS2 patients can be explained by as little as 20% variation in the levels of ionic conductances that contribute to repolarization reserve. This has significant implications for interpretation of whole-genome sequencing data and underlies the importance of interpreting the entire molecular signature of disease in any given individual.

Journal ArticleDOI
TL;DR: The need to find new ways to interpret the functional significance of suites of genetic variants, as well as the need for new disease models that take global genetic variant burdens, epigenetic factors, and cardiac environmental factors into account, are highlighted.
Abstract: Cardiomyopathies are a heterogeneous group of heart muscle diseases associated with heart failure, arrhythmias, and death. Genetic variation has a critical role in the pathogenesis of cardiomyopathies, and numerous single-gene mutations have been associated with distinctive cardiomyopathy phenotypes. Contemporaneously with these discoveries, there has been enormous growth of genome-wide sequencing studies in large populations, data that show extensive genomic variation within every individual. The considerable allelic diversity in cardiomyopathy genes and in genes predicted to impact clinical expression of disease mutations indicates the need for a more nuanced interpretation of single-gene mutation in cardiomyopathies. These findings highlight the need to find new ways to interpret the functional significance of suites of genetic variants, as well as the need for new disease models that take global genetic variant burdens, epigenetic factors, and cardiac environmental factors into account.

Journal ArticleDOI
TL;DR: The results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles.
Abstract: PRESENILIN1 (PSEN1) is the major locus for mutations causing familial Alzheimer's disease (FAD) and is also mutated in Pick disease of brain, familial acne inversa and dilated cardiomyopathy. It is a critical facilitator of Notch signalling and many other signalling pathways and protein cleavage events including production of the Amyloidβ (Aβ) peptide from the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). We previously reported that interference with splicing of transcripts of the zebrafish orthologue of PSEN1 creates dominant negative effects on Notch signalling. Here, we extend this work to show that various truncations of human PSEN1 (or zebrafish Psen1) protein have starkly differential effects on Notch signalling and cleavage of zebrafish Appa (a paralogue of human APP). Different truncations can suppress or stimulate Notch signalling but not Appa cleavage and vice versa. The G183V mutation possibly causing Pick disease causes production of aberrant transcripts truncating the open reading frame after exon 5 sequence. We show that the truncated protein potentially translated from these transcripts avidly incorporates into very stable Psen1-dependent higher molecular weight complexes and suppresses cleavage of Appa but not Notch signalling. In contrast, the truncated protein potentially produced by the P242LfsX11 acne inversa mutation has no effect on Appa cleavage but, unexpectedly, enhances Notch signalling. Our results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles.

Journal ArticleDOI
TL;DR: The philosophy of systems biology is introduced and recent progress in understanding the development of the heart at a systems biology level is discussed.
Abstract: Animal genomes contain a code for construction of the body plan from a fertilized egg. Understanding how genome information is deciphered to create the complex multilayered regulatory systems that drive organismal development, and which become altered in disease, is one of the greatest challenges in the biological sciences. The development of methods that effectively represent and communicate the complexity inherent in gene regulatory networks remains a major barrier. This review introduces the philosophy of systems biology and discusses recent progress in understanding the development of the heart at a systems biology level.

Journal ArticleDOI
TL;DR: A novel finding that NOTCH4 protein is expressed in the newly formed vasculature and inhibits NOTCH1 signalling when expressed in cis is found, indicating a role of Notch4 in fine-tuning the forming vascular plexus.