scispace - formally typeset
Search or ask a question
Institution

Xuzhou Medical College

EducationXuzhou, China
About: Xuzhou Medical College is a education organization based out in Xuzhou, China. It is known for research contribution in the topics: Cancer & Cell growth. The organization has 12721 authors who have published 7802 publications receiving 102970 citations.


Papers
More filters
Journal ArticleDOI
Rui-Qin Yao1, Dashi Qi1, Hongli Yu1, Jing Liu1, Lihua Yang1, Xiu-Xiang Wu1 
TL;DR: It is demonstrated that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF–TrkB–PI3K/Akt signaling pathway.
Abstract: Many studies have demonstrated that apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Neuroprotective effect of quercetin has been shown in a variety of brain injury models including ischemia/reperfusion. It is not clear whether BDNF–TrkB–PI3K/Akt signaling pathway mediates the neuroprotection of quercetin, though there has been some reports on the quercetin increased brain-derived neurotrophic factor (BDNF) level in brain injury models. We therefore first examined the neurological function, infarct volume and cell apoptosis in quercetin treated middle cerebral artery occlusion (MCAO) rats. Then the protein expression of BDNF, cleaved caspase-3 and p-Akt were evaluated in either the absence or presence of PI3K inhibitor (LY294002) or tropomyosin receptor kinase B (TrkB) receptor antagonist (K252a) by immunohistochemistry staining and western blotting. Quercetin significantly improved neurological function, while it decreased the infarct volume and the number of TdT mediated dUTP nick end labeling positive cells in MCAO rats. The protein expression of BDNF, TrkB and p-Akt also increased in the quercetin treated rats. However, treatment with LY294002 or K252a reversed the quercetin-induced increase of BDNF and p-Akt proteins and decrease of cleaved caspase-3 protein in focal cerebral ischemia rats. These results demonstrate that quercetin can decrease cell apoptosis in the focal cerebral ischemia rat brain and the mechanism may be related to the activation of BDNF–TrkB–PI3K/Akt signaling pathway.

140 citations

Journal ArticleDOI
TL;DR: An integrated pipeline for processing cryo-ET data implemented in EMAN2 streamlines data processing to minimize human bias, and improves the quality and resolution of resulting macromolecular structures, both in vitro and in cells.
Abstract: Electron cryotomography is currently the only method capable of visualizing cells in three dimensions at nanometer resolutions. While modern instruments produce massive amounts of tomography data containing extremely rich structural information, data processing is very labor intensive and the results are often limited by the skills of the personnel rather than the data. We present an integrated workflow that covers the entire tomography data processing pipeline, from automated tilt series alignment to subnanometer resolution subtomogram averaging. Resolution enhancement is made possible through the use of per-particle per-tilt contrast transfer function correction and alignment. The workflow greatly reduces human bias, increases throughput and more closely approaches data-limited resolution for subtomogram averaging in both purified macromolecules and cells.

139 citations

Journal ArticleDOI
TL;DR: Galantamine treatment prevented LPS-induced deficits in spatial learning and memory as well as memory acquisition of the passive avoidance response and indicates that galantamine could be a promising treatment to improve endotoxin-induced cognitive decline and neuroinflammation in neurodegenerative diseases.
Abstract: Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases such as Alzheimer’s disease. Lipopolysaccharide (LPS, endotoxin) levels are higher in the brains of Alzheimer’s disease patients and are associated with neuroinflammation and cognitive decline, while neural cholinergic signaling controls inflammation. This study aimed to examine the efficacy of galantamine, a clinically approved cholinergic agent, in alleviating LPS-induced neuroinflammation and cognitive decline as well as the associated mechanism. Mice were treated with galantamine (4 mg/kg, intraperitoneal injection) for 14 days prior to LPS exposure (intracerebroventricular injection). Cognitive tests were performed, including the Morris water maze and step-through tests. mRNA expression of the microglial marker (CD11b), astrocytic marker (GFAP), and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were examined in the hippocampus by quantitative RT-PCR. The inflammatory signaling molecule, nuclear factor-kappa B (NF-κB p65), and synapse-associated proteins (synaptophysin, SYN, and postsynaptic density protein 95, PSD-95) were examined in the hippocampus by western blotting. Furthermore, NF-κB p65 levels in microglial cells and hippocampal neurons were examined in response to LPS and galantamine. Galantamine treatment prevented LPS-induced deficits in spatial learning and memory as well as memory acquisition of the passive avoidance response. Galantamine decreased the expression of microglia and astrocyte markers (CD11b and GFAP), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and NF-κB p65 in the hippocampus of LPS-exposed mice. Furthermore, galantamine ameliorated LPS-induced loss of synapse-associated proteins (SYN and PSD-95) in the hippocampus. In the in vitro study, LPS increased NF-κB p65 levels in microglia (BV-2 cells); the supernatant of LPS-stimulated microglia (Mi-sup), but not LPS, decreased the viability of hippocampal neuronal cells (HT-22 cells) and increased NF-κB p65 levels as well as expression of pro-inflammatory cytokines (IL-1β, IL-6) in HT-22 cells. Importantly, galantamine reduced the inflammatory response not only in the BV-2 microglia cell line, but also in the HT-22 hippocampal neuronal cell line. These findings indicate that galantamine could be a promising treatment to improve endotoxin-induced cognitive decline and neuroinflammation in neurodegenerative diseases.

138 citations

Journal ArticleDOI
TL;DR: It is demonstrated that circPTK2 exerts critical roles in CRC growth and metastasis and may serve as a potential therapeutic target for CRC metastasis, and also a promising biomarker for early diagnosis of metastasis.
Abstract: As a novel class of noncoding RNAs, circRNAs have been recently identified to regulate tumorigenesis and aggressiveness. However, the function of circRNAs in colorectal cancer (CRC) metastasis remains unclear. We aimed to identify circRNAs that are upregulated in CRC tissues from patients and study their function in CRC metastasis. We compared six pairs of CRC tissues and their matched adjacent non-tumor tissues by using circRNA microarray. We first evaluated the expression of circPTK2 (hsa_circ_0005273) in fresh tissues from CRC tumors and corresponding adjacent tissues by qPCR analysis. CircPTK2 expression levels in the tissue microarray with 5 years of survival information were determined by RNA-ISH analysis. Meanwhile, the expression levels of circulating circPTK2 were further analyzed according to the patients’ clinical features. We analyzed cell apoptosis, colony formation, migration, and invasion in CRC cells. To further elucidate the effect of circPTK2 in CRC metastasis, we also conducted a colon cancer hepatic and pulmonary metastasis experiment. We used RNA biotin-labeled pull down and mass spectrometry to identify the target of circPTK2. We established a PDTX model to evaluate the effect of shRNA specifically targeting circPTK2 on tumor metastasis. We identified a novel circRNA, circPTK2, which is back-spliced of three exons (exons 27, 28 and 29) of PTK2 by using circRNA microarray, bioinformatics and functional studies. CircPTK2 was elevated in CRC tissues and positively associated with tumor growth and metastasis. CRC patients with increased circPTK2 expression were positively correlated with poorer survival rates. Furthermore, our studies showed that circPTK2 could promote EMT of CRC cells in vitro and in vivo by binding to vimentin protein on sites Ser38, Ser55 and Ser82. We further demonstrated the interaction of circPTK2 and vimentin mediated the regulation of CRC by knockdown or overexpression of vimentin. In addition, we revealed that tail vein injection of shRNA specifically targeting circPTK2 blunt tumor metastasis in a patient-derived CRC xenograft model. Collectively, these results demonstrate that circPTK2 exerts critical roles in CRC growth and metastasis and may serve as a potential therapeutic target for CRC metastasis, and also a promising biomarker for early diagnosis of metastasis.

137 citations

Journal ArticleDOI
01 Oct 2019
TL;DR: It is found that Cdr1as could promote the expression of AFP, a well-known biomarker for HCC, by sponging miR-1270 and exosomes extracted from HCC cells overexpressing circRN1as accelerated the proliferative and migratory abilities of surrounding normal cells.
Abstract: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Recent years, circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of many diseases. A growing number of evidences have identified the representative function of exosomal circRNAs in the physiological state of donor cells, which further induces cellular responses after captured by recipient cells. However, the contributions of circRNAs to HCC remain largely unknown. In vitro and in vivo regulatory roles of circRNA Cdr1as in proliferative and migratory abilities of HCC were evaluated by CCK8, EdU, Transwell and tumourigenicity assays, respectively. Results showed circRNA Cdr1as was highly expressed in HCC cell lines and tissues. Overexpression of circRNA Cdr1as greatly accelerated HCC cells to proliferate and migrate. Mechanistically, we found that Cdr1as could promote the expression of AFP, a well-known biomarker for HCC, by sponging miR-1270. Further studies showed exosomes extracted from HCC cells overexpressing circRNA Cdr1as accelerated the proliferative and migratory abilities of surrounding normal cells. In all, circRNA Cdr1as serves as a ceRNA to promote the progression of HCC. Meanwhile, it is directly transferred from HCC cells to surrounding normal cells via exosomes to further mediate the biological functions of surrounding cells.

137 citations


Authors

Showing all 12775 results

NameH-indexPapersCitations
Liang Wang98171845600
Chang Liu97109939573
Wei Wang95354459660
Yu Liu66126220577
Deling Kong6538816515
Zhimou Yang6122212522
Xu-Feng Huang6133213074
Guangming Lu6047613218
Dan Ding5921212494
Jian Cao5848611074
Yuanjin Zhao5732812076
Jie Yang5648811382
Lei Wang54107615189
Xiaodong Shi523238910
Wei Pan504089037
Network Information
Related Institutions (5)
Nanjing Medical University
37.9K papers, 635.8K citations

94% related

Fourth Military Medical University
20.7K papers, 425.5K citations

92% related

Second Military Medical University
20.4K papers, 449.4K citations

91% related

Peking Union Medical College
61.8K papers, 1.1M citations

89% related

Capital Medical University
47.2K papers, 811.2K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202288
20211,401
20201,226
2019936
2018769