scispace - formally typeset
Search or ask a question
Institution

Xuzhou Medical College

EducationXuzhou, China
About: Xuzhou Medical College is a education organization based out in Xuzhou, China. It is known for research contribution in the topics: Cancer & Cell growth. The organization has 12721 authors who have published 7802 publications receiving 102970 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: MSCs that overexpressed Cxcr4 and were injected into irradiated mice had an enhanced homing capacity which was related to the bone marrow level of stromal-derived factor 1, and this was positively correlated with the number of CxCr4-overexpressing MSCs homing to theBone marrow.
Abstract: The efficiency of the intravascular delivery of mesenchymal stem cells (MSCs) homing to bone marrow has been largely limited. This study aimed to evaluate the homing efficacy in irradiated mice of MSCs that have been engineered to overexpress the murine Cxcr4 gene. Mouse MSCs were infected by a lentivirus vector carrying Cxcr4. MSC migration was detected by an in vitro transwell migration assay. EGFP-positive MSCs were systemically injected into BALB/c mice and detected in bone marrow samples by flow cytometry. The concentration of mouse stromal-derived factor 1 was detected by ELISA. The plasma concentration of the inflammatory cytokines, interleukin (IL)-6, IL-10, MCP-1, IFN-γ, TNF-α, and IL-12p70, were determined by cytometric bead array. MSCs that overexpressed Cxcr4 displayed enhanced migration toward a stromal-derived factor 1 gradient. The transplantation of Cxcr4-overexpressing MSCs into irradiated mice leads to increased homing to the bone marrow. Moreover, the frequency of the EGFP-positive cells in a bone marrow infusion 24 h after total body irradiation was 2.2-fold more than at 4 h after irradiation. The concentration of both plasma and bone marrow stromal-derived factor 1 increased after irradiation, and this was positively correlated with the number of Cxcr4-overexpressing MSCs homing to the bone marrow. Moreover, compared with the control groups, the plasma levels of IL-6, IFN-γ, TNF-α, and MCP-1 and IL-12p70 in recipients infused with Cxcr4-overexpressing MSCs was significantly decreased. The level of IL-10 was increased, which correlated with changes in the Th1 and Th2 subset balance. MSCs that overexpressed Cxcr4 and were injected into irradiated mice had an enhanced homing capacity which was related to the bone marrow level of stromal-derived factor 1.

41 citations

Journal ArticleDOI
TL;DR: It is highlighted that myricetin prevents obesity and systemic insulin resistance by activating BAT and increasing adiponectin expression in BAT.
Abstract: Myricetin, a dietary flavonoid, is effective in the treatment of obesity and insulin resistance by increasing glucose transport and lipogenesis in adipocyte and diminishing systemic inflammation in obesity. However, it has not been revealed yet whether myricetin is associated with brown adipose tissue (BAT) activation that tightly mediates systemic energy metabolism. Therefore, this study assessed whether myricetin activated brown adipose tissue in db/db mouse. Myricetin (400 mg/kg) in distilled water was fed daily by oral gavage to leptin receptor-deficient db/db male mice at 4 weeks of age for 14 weeks. Body weight change, glucose intolerance test, blood lipid profile and BAT activation using PET-CT were assessed. After myricetin treatment for 14 weeks, systemic insulin resistance and hepatic steatosis were significantly improved in db/db mice with body weight reduction and myricetin led to decreased adipocity, improved plasma lipid profiles and increased energy expenditure. Myricetin activated BAT by upregulating thermogenic protein expression and activating mitochondrial biogenesis, eventually increasing heat dissipation in skin after cold exposure. In iWAT, myricetin induced beige formation, increased thermogenic protein expression and activated mitochondrial biogenesis. Consistently, thermogenic gene expression was upregulated when myricetin was introduced in C3H10T1/2 cells during brown adipocytes differentiation. Moreover, the expression level of adiponectin was significantly increased in C3H10T1/2 cells, adipose tissues and plasma after myricetin treatment. These results highlight that myricetin prevents obesity and systemic insulin resistance by activating BAT and increasing adiponectin expression in BAT.

41 citations

Journal ArticleDOI
TL;DR: Findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury.
Abstract: Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.

41 citations

Journal ArticleDOI
TL;DR: The present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer.
Abstract: Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1‑to‑S‑phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open‑source protein‑ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration‑approved small molecular drugs with a re‑purposing strategy. Among the top compounds identified by idock score, nine were selected for further study. Among them, adapalene (ADA; CD271,6‑[3‑(1‑adamantyl)‑4‑methoxyphenyl]‑2‑naphtoic acid) exhibited the highest anti‑proliferative effects in LOVO and DLD1 human colon cancer cell lines. Consistent with the expected properties of CDK2 inhibitors, the present study demonstrated that ADA significantly increased the G1‑phase population and decreased the expression of CDK2, cyclin E and retinoblastoma protein (Rb), as well as the phosphorylation of CDK2 (on Thr‑160) and Rb (on Ser‑795). Furthermore, the anti‑cancer effects of ADA were examined in vivo on xenograft tumors derived from DLD1 human colorectal cancer cells subcutaneously inoculated in BALB/C nude mice. ADA (20 mg/kg orally) exhibited marked anti‑tumor activity, comparable to that of oxaliplatin (40 mg/kg), and dose‑dependently inhibited tumor growth (P<0.05), while combined administration of ADA and oxaliplatin produced the highest therapeutic effect. To the best of our knowledge, the present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer.

41 citations

Journal ArticleDOI
TL;DR: This review mainly focuses on the early diagnostic method and recommended management of toxicities of different systems separately, and consequently maximized effectiveness of immunotherapy can be achieved.

41 citations


Authors

Showing all 12775 results

NameH-indexPapersCitations
Liang Wang98171845600
Chang Liu97109939573
Wei Wang95354459660
Yu Liu66126220577
Deling Kong6538816515
Zhimou Yang6122212522
Xu-Feng Huang6133213074
Guangming Lu6047613218
Dan Ding5921212494
Jian Cao5848611074
Yuanjin Zhao5732812076
Jie Yang5648811382
Lei Wang54107615189
Xiaodong Shi523238910
Wei Pan504089037
Network Information
Related Institutions (5)
Nanjing Medical University
37.9K papers, 635.8K citations

94% related

Fourth Military Medical University
20.7K papers, 425.5K citations

92% related

Second Military Medical University
20.4K papers, 449.4K citations

91% related

Peking Union Medical College
61.8K papers, 1.1M citations

89% related

Capital Medical University
47.2K papers, 811.2K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202288
20211,401
20201,226
2019936
2018769