scispace - formally typeset
Search or ask a question

Showing papers in "Applied and Environmental Microbiology in 1991"


Journal ArticleDOI
TL;DR: Intensive spatial and temporal analysis of microbial communities with this technique can produce ecologically relevant classifications of heterotrophic microbial communities.
Abstract: The BLOLOG redox technology based on tetrazolium dye reduction as an indicator of sole-carbon-source utilization was evaluated as a rapid, community-level method to characterize and classify heterotrophic microbial communities. Direct incubation of whole environmental samples (aquatic, soil, and rhizosphere) in BIOLOG plates containing 95 separate carbon sources produced community-dependent patterns of sole-carbon-source utilization. Principal-component analysis of color responses quantified from digitized images of plates revealed distinctive patterns among microbial habitats and spatial gradients within soil and estuarine sites. Correlation of the original carbon source variables to the principal components gives a functional basis to distinctions among communities. Intensive spatial and temporal analysis of microbial communities with this technique can produce ecologically relevant classifications of heterotrophic microbial communities.

2,094 citations


Journal ArticleDOI
TL;DR: A new assay that differentiates between indoleacetic acid (IAA)-producing and -nonproducing bacteria on a colony plate lift is developed and provides a rapid and convenient method to screen large numbers of bacteria.
Abstract: We have developed a new assay that differentiates between indoleacetic acid (IAA)-producing and -nonproducing bacteria on a colony plate lift. Medium supplemented with 5 mM L-tryptophan is inoculated with isolates of interest, overlaid with a nitrocellulose membrane, and then incubated until bacterial colonies reach 1 to 2 mm in diameter. The membrane is removed to a filter paper saturated with Salkowski reagent and incubated until distinct red haloes form around the colonies. The colorimetric reaction to IAA is limited to a region immediately surrounding each colony, is specific to isolates producing IAA, occurs within 1 h after the membrane is placed in the reagent, and is sensitive to as little as 50 pmol of IAA in a 2-mm2 spot. We have used this assay for quantifying epiphytic and endophytic populations of IAA-producing isolates of Pseudomonas syringae subsp. savastanoi and for detecting IAA-producing colonies of other pseudomonads and Erwinia herbicola. The assay provides a rapid and convenient method to screen large numbers of bacteria. Images

1,191 citations


Journal ArticleDOI
TL;DR: A rapid method for the direct extraction of DNA from soil and sediments was developed, which allows for the analysis of small samples and the processing of many samples in a relatively short (7 h) period.
Abstract: A rapid method for the direct extraction of DNA from soil and sediments was developed. The indigenous microorganisms in the soil and sediments were lysed by using lysozyme and a freeze-thaw procedure. The lysate was extracted with sodium dodecyl sulfate and phenol-chloroform. In addition to a high recovery efficiency (greater than 90%), the yields of DNA were high (38 and 12 micrograms/g [wet weight] from sediments and soil, respectively). This method generated minimal shearing of the extracted DNA. The crude DNA could be further purified with an Elutip-d column if necessary. An additional advantage of this method is that only 1 g of sample is required, which allows for the analysis of small samples and the processing of many samples in a relatively short (7 h) period.

637 citations


Journal ArticleDOI
TL;DR: It is demonstrated that nisin is bactericidal to Salmonella species and that the observed inactivation can be demonstrated in other gram-negative bacteria.
Abstract: Nisin, produced by Lactococcus lactis subsp. lactis, has a broad spectrum of activity against gram-positive bacteria and is generally recognized as safe in the United States for use in selected pasteurized cheese spreads to control the outgrowth and toxin production of Clostridium botulinum. This study evaluated the inhibitory activity of nisin in combination with a chelating agent, disodium EDTA, against several Salmonella species and other selected gram-negative bacteria. After a 1-h exposure to 50 micrograms of nisin per ml and 20 mM disodium EDTA at 37 degrees C, a 3.2- to 6.9-log-cycle reduction in population was observed with the species tested. Treatment with disodium EDTA or nisin alone produced no significant inhibition (less than 1-log-cycle reduction) of the Salmonella and other gram-negative species tested. These results demonstrated that nisin is bactericidal to Salmonella species and that the observed inactivation can be demonstrated in other gram-negative bacteria. Applications involving the simultaneous treatment with nisin and chelating agents that alter the outer membrane may be of value in controlling food-borne salmonellae and other gram-negative bacteria.

586 citations


Journal ArticleDOI
TL;DR: These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol and exceeded theoretical limits on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients.
Abstract: Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl) Integration improved the stability of the Z mobilis genes in E coli, but further selection was required to increase expression Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z mobilis genes Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol Ethanol concentrations of 544 and 416 g/liter were obtained from 10% glucose and 8% xylose, respectively The efficiency of conversion exceeded theoretical limits (051 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA)

492 citations


Journal ArticleDOI
TL;DR: The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.
Abstract: Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.

487 citations


Journal ArticleDOI
TL;DR: It is shown that the probability of enhancing yield with existing inoculation technology decreases dramatically with increasing numbers of indigenous rhizobia, and a potential for improving inoculations technology, the N(2) fixation capacity of rhizobial strains, and the efficiency of symbiosis is indicated.
Abstract: Indigenous rhizobia in soil present a competition barrier to the establishment of inoculant strains, possibly leading to inoculation failure. In this study, we used the natural diversity of rhizobial species and numbers in our fields to define, in quantitative terms, the relationship between indigenous rhizobial populations and inoculation response. Eight standardized inoculation trials were conducted at five well-characterized field sites on the island of Maui, Hawaii. Soil rhizobial populations ranged from 0 to over 3.5 × 104 g of soil-1 for the different legumes used. At each site, no less than four but as many as seven legume species were planted from among the following: soybean (Glycine max), lima bean (Phaseolus lunatus), cowpea (Vigna unguiculata), bush bean (Phaseolus vulgaris), peanut (Arachis hypogaea), Leucaena leucocephala, tinga pea (Lathyrus tingeatus), alfalfa (Medicago sativa), and clover (Trifolium repens). Each legume was (i) inoculated with an equal mixture of three effective strains of homologous rhizobia, (ii) fertilized at high rates with urea, or (iii) left uninoculated. For soybeans, a nonnodulating isoline was used in all trials as the rhizobia-negative control. Inoculation increased economic yield for 22 of the 29 (76%) legume species-site combinations. While the yield increase was greater than 100 kg ha-1 in all cases, in only 11 (38%) of the species-site combinations was the increase statistically significant (P ≤ 0.05). On average, inoculation increased yield by 62%. Soybean (G. max) responded to inoculation most frequently, while cowpea (V. unguiculata) failed to respond in all trials. Inoculation responses in the other legumes were site dependent. The response to inoculation and the competitive success of inoculant rhizobia were inversely related to numbers of indigenous rhizobia. As few as 50 rhizobia g of soil-1 eliminated inoculation response. When fewer than 10 indigenous rhizobia g of soil-1 were present, economic yield was significantly increased 85% of the time. Yield was significantly increased in only 6% of the observations when numbers of indigenous rhizobia were greater than 10 cells g of soil-1. A significant response to N application, significant increases in nodule parameters, and greater than 50% nodule occupancy by inoculant rhizobia did not necessarily coincide with significant inoculation responses. No less than a doubling of nodule mass and 66% nodule occupancy by inoculant rhizobia were required to significantly increase the yield of inoculated crops over that of uninoculated crops. However, lack of an inoculation response was common even when inoculum strains occupied the majority of nodules. In these trials, the symbiotic yield of crops was, on average, only 88% of the maximum yield potential, as defined by the fertilizer N treatment. The difference between the yield of N-fertilized crops and that of N2-fixing crops indicates a potential for improving inoculation technology, the N2 fixation capacity of rhizobial strains, and the efficiency of symbiosis. In this study, we show that the probability of enhancing yield with existing inoculation technology decreases dramatically with increasing numbers of indigenous rhizobia.

416 citations


Journal ArticleDOI
TL;DR: Modified forms of the Ratkowsky model were selected as the most suitable model for both the growth rate and the asymptote as a function of temperature.
Abstract: The temperature of chilled foods is a very important variable for microbial safety in a production and distribution chain. To predict the number of organisms as a function of temperature and time, it is essential to model the lag time, specific growth rate, and asymptote (growth yield) as a function of temperature. The objective of this research was to determine the suitability and usefulness of different models, either available from the literature or newly developed. The models were compared by using an F test, by which the lack of fit of the models was compared with the measuring error. From the results, a hyperbolic model was selected for the description of the lag time as a function of temperature. Modified forms of the Ratkowsky model were selected as the most suitable model for both the growth rate and the asymptote as a function of temperature. The selected models could be used to predict experimentally determined numbers of organisms as a function of temperature and time.

409 citations


Journal ArticleDOI
TL;DR: Ten strains of bacteriocin-producing lactic acid bacteria were isolated from retail cuts of meat and the proteinaceous nature of the inhibitory substance was confirmed by demonstration of its sensitivity to proteolytic enzymes.
Abstract: Ten strains of bacteriocin-producing lactic acid bacteria were isolated from retail cuts of meat. These 10 strains along with 11 other bacteriocin-producing lactic acid bacteria were tested for inhibitory activity against psychotrophic pathogens, including four strains of Listeria monocytogenes, two strains of Aeromonas hydrophila, and two strains of Staphylococcus aureus. Inhibition due to acid, hydrogen peroxide, and lytic bacteriophage were excluded. The proteinaceous nature of the inhibitory substance was confirmed by demonstration of its sensitivity to proteolytic enzymes. Eight of the meat isolates had inhibitory activity against all four L. monocytogenes strains. Bacteriocin activity against L. monocytogenes was found in all of the strains obtained from other sources. Activity against A. hydrophila and S. aureus was also common.

394 citations


Journal ArticleDOI
TL;DR: To limit the growth of coliform bacteria in drinking water, the study concludes that assimilable organic carbon levels should be reduced to less than 50 micrograms/liter.
Abstract: Regrowth of coliform bacteria in distribution systems has been a problem for a number of water utilities. Efforts to solve the regrowth problem have not been totally successful. The current project, which was conducted at the New Jersey American Water Co.-Swimming River Treatment Plant, showed that the occurrence of coliform bacteria in the distribution system could be associated with rainfall, water temperatures greater than 15 degrees C, total organic carbon levels greater than 2.4 mg/liter, and assimilable organic carbon levels greater than 50 micrograms of acetate carbon equivalents per liter. A multiple linear regression model based on free chlorine residuals present in dead-end sections of the distribution system and temperature predicted 83.8% of the heterotrophic plate count bacterial variation. To limit the growth of coliform bacteria in drinking water, the study concludes that assimilable organic carbon levels should be reduced to less than 50 micrograms/liter.

376 citations


Journal ArticleDOI
TL;DR: Pediocin AcH production was negligible when the pH of the medium was maintained at 5.0 or above, even in the presence of high cell mass, and the influence of growth parameters on the production was studied.
Abstract: The influence of growth parameters on the production of pediocin AcH by Pediococcus acidilactici H was studied. This strain produced large quantities of pediocin AcH in TGE broth (Trypticase [1%], glucose [1%], yeast extract [1%], Tween 80 [0.2%], Mn [0.033 mM], Mg [0.02 mM] [pH 6.5]) within 16 to 18 h at 30 to 37 degrees C (final pH, 3.6 to 3.7). Pediocin AcH production was negligible when the pH of the medium was maintained at 5.0 or above, even in the presence of high cell mass.

Journal ArticleDOI
TL;DR: While vitamins B1 and B12 did not affect growth significantly, EPA yield was increased by 65% by B12 supplementation, and the EPA content of total fatty acids increased with increasing concentrations of nitrate and urea.
Abstract: Detailed studies were carried out on the effects of nitrogen source, phosphate, sodium chloride, growth factors, precursors, CO2, temperature, initial pH, and inoculum size on biomass and eicosapentaenoic acid (EPA) production by Phaeodactylum tricornutum. The EPA content of total fatty acids increased with increasing concentrations of nitrate and urea. Sodium chloride was not required for growth or EPA production. While vitamins B1 and B12 did not affect growth significantly, EPA yield was increased by 65% by B12 supplementation. Maximum EPA production occurred when the air gassing supply was supplemented with 1% CO2. Optimum culture temperature and initial pH for EPA production were 21.5 to 23 degrees C and 7.6, respectively. EPA yields of up to 133 mg/liter of culture were observed. EPA constituted up to 30 to 40% of total fatty acids.

Journal ArticleDOI
TL;DR: The results indicate that the pathway for biodegradation of p-nitrophenol involves the initial removal of the nitro group as nitrite and formation of hydroquinone.
Abstract: A Moraxella strain grew on p-nitrophenol with stoichiometric release of nitrite. During induction of the enzymes for growth on p-nitrophenol, traces of hydroquinone accumulated in the medium. In the presence of 2,2′-dipyridyl, p-nitrophenol was converted stoichiometrically to hydroquinone. Particulate enzymes catalyzed the conversion of p-nitrophenol to hydroquinone in the presence of NADPH and oxygen. Soluble enzymes catalyzed the conversion of hydroquinone to γ-hydroxymuconic semialdehyde, which was identified by high-performance liquid chromatography (HPLC)-mass spectroscopy. Upon addition of catalytic amounts of NAD+, γ-hydroxymuconic semialdehyde was converted to β-ketoadipic acid. In the presence of pyruvate and lactic dehydrogenase, substrate amounts of NAD were required and γ-hydroxymuconic semialdehyde was converted to maleylacetic acid, which was identified by HPLC-mass spectroscopy. Similar results were obtained when the reaction was carried out in the presence of potassium ferricyanide. Extracts prepared from p-nitrophenol-growth cells also contained an enzyme that catalyzed the oxidation of 1,2,4-benzenetriol to maleylacetic acid. The enzyme responsible for the oxidation of 1,2,4-benzenetriol was separated from the enzyme responsible for hydroquinone oxidation by DEAE-cellulose chromatography. The results indicate that the pathway for biodegradation of p-nitrophenol involves the initial removal of the nitro group as nitrite and formation of hydroquinone. 1,4-Benzoquinone, a likely intermediate in the initial reaction, was not detected. Hydroquinone is converted to β-ketoadipic acid via γ-hydroxymuconic semialdehyde and maleylacetic acid.

Journal ArticleDOI
TL;DR: Oxidative and reductive cycling of sulfur occurred in all sediment layers with an intermediate "thiosulfate shunt" as an important mechanism regulating the electron flow.
Abstract: Reductive and oxidative pathways of the sulfur cycle were studied in a marine sediment by parallel radiotracer experiments with SO(4), H(2)S, and S(2)O(3) injected into undisturbed sediment cores. The distributions of viable populations of sulfate- and thiosulfate-reducing bacteria and of thiosulfate-disproportionating bacteria were concurrently determined. Sulfate reduction occurred both in the reducing sediment layers and in oxidized and even oxic surface layers. The population density of sulfate-reducing bacteria was >10 cm in the oxic layer, high enough that it could possibly account for the measured rates of sulfate reduction. The bacterial numbers counted in the reducing sediment layers were 100-fold lower. The dominant sulfate reducers growing on acetate or H(2) were gas-vacuolated motile rods which were previously undescribed. The products of sulfide oxidation, which took place in both oxidized and reduced sediment layers, were 65 to 85% S(2)O(3) and 35 to 15% SO(4). Thiosulfate was concurrently oxidized to sulfate, reduced to sulfide, and disproportionated to sulfate and sulfide. There was a gradual shift from predominance of oxidation toward predominance of reduction with depth in the sediment. Disproportionation was the most important pathway overall. Thiosulfate disproportionation occurred only as cometabolism in the marine acetate-utilizing sulfate-reducing bacteria, which could not conserve energy for growth from this process alone. Oxidative and reductive cycling of sulfur thus occurred in all sediment layers with an intermediate "thiosulfate shunt" as an important mechanism regulating the electron flow.

Journal ArticleDOI
TL;DR: In this paper, the degradation of benzene, toluene, and p-xylene was investigated in sandy aquifer material and by two pure cultures isolated from the same site.
Abstract: Benzene, toluene, and p-xylene (BTX) were degraded by indigenous mixed cultures in sandy aquifer material and by two pure cultures isolated from the same site. Although BTX compounds have a similar chemical structure, the fate of individual BTX compounds differed when the compounds were fed to each pure culture and mixed culture aquifer slurries. The identification of substrate interactions aided the understanding of this behavior. Beneficial substrate interactions included enhanced degradation of benzene and p-xylene by the presence of toluene in Pseudomonas sp. strain CFS-215 incubations, as well as benzene-dependent degradation of toluene and p-xylene by Arthrobacter sp. strain HCB. Detrimental substrate interactions included retardation in benzene and toluene degradation by the presence of p-xylene in both aquifer slurries and Pseudomonas incubations. The catabolic diversity of microbes in the environment precludes generalizations about the capacity of individual BTX compounds to enhance or inhibit the degradation of other BTX compounds.

Journal ArticleDOI
TL;DR: In this article, resting-cell suspensions of bacteria isolated from groundwater were added as a pulse to the tops of columns of clean quartz sand, and an artificial groundwater solution (AGW) was pumped through the columns, and bacterial breakthrough curves were established and compared to test the effects of ionic strength of the AGW, cell size (by using strains of similar cell surface hydrophobicity but different size), mineral grain size, and presence of heterogeneities within the porous media on transport of the bacteria.
Abstract: Resting-cell suspensions of bacteria isolated from groundwater were added as a pulse to the tops of columns of clean quartz sand. An artificial groundwater solution (AGW) was pumped through the columns, and bacterial breakthrough curves were established and compared to test the effects of ionic strength of the AGW, cell size (by using strains of similar cell surface hydrophobicity but different size), mineral grain size, and presence of heterogeneities within the porous media on transport of the bacteria. The proportion of cells recovered in the effluent ranged from nearly 90% for AGW of a higher ionic strength (I = 0.0089 versus 0.00089 m), small cells (0.75-micron-diameter spheres versus 0.75 by 1.8-micron rods), and coarse-grained sand (1.0 versus 0.33 mm) to less than 1% for AGW of lower ionic strength, large cells, and fine-grained sand. Differences in the widths of peaks (an indicator of dispersion) were significant only for the cell size treatment. For treatments containing heterogeneities (a vein of coarse sand in the center of a bed of fine sand), doubly peaked breakthrough curves were obtained. The first peak represents movement of bacteria through the transmissive coarse-grained vein. The second peak is thought to be dominated by cells which have moved (due to dispersion) from the fine-grained matrix to the coarse-grained vein near the top of the column and thus had been retarded, but not retained, by the column. Strength of effects tests indicated that grain size was the most important factor controlling transport of bacteria over the range of values tested for all of the factors examined.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: It is suggested that more than one characteristic of bacterial cells determines whether the organisms are transported through soil with moving water.
Abstract: A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. The bacteria differed markedly in their extent of transport; their hydrophobicity, as measured by adherence to n-octane and by hydrophobic-interaction chromatography; and their net surface electrostatic charge, as determined by electrostatic interaction chromatography and by measurements of the zeta potential. Transport of the 19 strains through Kendaia loam or their retention by this soil was not correlated with hydrophobicities or net surface charges of the cells or the presence of capsules. Among 10 strains tested, the presence of flagella was also not correlated with transport. Retention was statistically related to cell size, with bacteria shorter than 1.0 μm usually showing higher percentages of cells being transported through the soil. We suggest that more than one characteristic of bacterial cells determines whether the organisms are transported through soil with moving water.

Journal ArticleDOI
TL;DR: In this paper, anaerobic methanol-PCE enrichment cultures were developed which proved capable of dechlorinating high concentrations of perchloroethylene (PCE) to ethene.
Abstract: Tetrachloroethene, also known as perchloroethylene (PCE), is a common groundwater contaminant throughout the United States. The incomplete reductive dechlorination of PCE--resulting in accumulations of trichloroethene, dichloroethene isomers, and/or vinyl chloride--has been observed by many investigators in a wide variety of methanogenic environments. Previous mixed-culture studies have demonstrated that complete dechlorination to ethene is possible, although the final dechlorination step from vinyl chloride to ethene is rate limiting, with significant levels of vinyl chloride typically persisting. In this study, anaerobic methanol-PCE enrichment cultures which proved capable of dechlorinating high concentrations PCE to ethene were developed. Added concentrations of PCE as high as 550 microM (91-mg/liter nominal concentration; approximately 55-mg/liter actual aqueous concentration) were routinely dechlorinated to 80% ethene and 20% vinyl chloride within 2 days at 35 degrees C. The methanol level used was approximately twice that needed for complete dechlorination of PCE to ethene. The observed transformations occurred in the absence of methanogenesis, which was apparently inhibited by the high concentrations of PCE. When incubation was allowed to proceed for as long as 4 days, virtually complete conversion of PCE to ethene resulted, with less than 1% persisting as vinyl chloride. An electron balance demonstrated that methanol consumption was completely accounted for by dechlorination (31%) and acetate production (69%). The high volumetric rates of PCE dechlorination (up to 275 mumol/liter/day) and the relatively large fraction (ca. one-third) of the supplied electron donor used for dechlorination suggest that reductive dechlorination could be exploited for bioremediation of PCE-contaminated sites.

Journal ArticleDOI
W Haug1, A Schmidt1, B. Nörtemann1, D C Hempel1, Andreas Stolz1, H J Knackmuss1 
TL;DR: It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes and these dyes are then gratuitously reduced in the cytoplasm by unspecific reductases.
Abstract: Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases.

Journal ArticleDOI
TL;DR: During conversion of [14C]TCE, various proteins became radiolabeled, including the alpha-subunit of the hydroxylase component of soluble methane monooxygenase, which indicated that TCE-mediated inactivation of cells was caused by nonspecific covalent binding of degradation products to cellular proteins.
Abstract: The kinetics of the degradation of trichloroethylene (TCE) and seven other chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b were studied. All experiments were performed with cells grown under copper stress and thus expressing soluble methane monooxygenase. Compounds that were readily degraded included chloroform, trans-1,2-dichloroethylene, and TCE, with Vmax values of 550, 330, and 290 nmol min-1 mg of cells-1, respectively. 1,1-Dichloroethylene was a very poor substrate. TCE was found to be toxic for the cells, and this phenomenon was studied in detail. Addition of activated carbon decreased the acute toxicity of high levels of TCE by adsorption, and slow desorption enabled the cells to partially degrade TCE. TCE was also toxic by inactivating the cells during its conversion. The degree of inactivation was proportional to the amount of TCE degraded; maximum degradation occurred at a concentration of 2 mumol of TCE mg of cells-1. During conversion of [14C]TCE, various proteins became radiolabeled, including the alpha-subunit of the hydroxylase component of soluble methane monooxygenase. This indicated that TCE-mediated inactivation of cells was caused by nonspecific covalent binding of degradation products to cellular proteins.

Journal ArticleDOI
TL;DR: Insecticidal activity predicted by the PCR screen was found to correspond with the insecticidal activity of insect bioassays, indicating the screen can identify strains with altered electrophoretic patterns containing potentially novel genes.
Abstract: A rapid analysis of Bacillus thuringiensis strains predictive of insecticidal activity was established by using polymerase chain reaction (PCR) technology. Primers specific to regions of high homology within genes encoding three major classes of B. thuringiensis crystal proteins were used to generate a PCR product profile characteristic of each insecticidal class. Predictions of insecticidal activity were made on the basis of the electrophoretic patterns of the PCR products. Included in the screen were PCR primers specific for cryI, cryIII, and cryIV genes, which are insecticidal for lepidopterans, coleopterans, and dipterans, respectively. Known B. thuringiensis strains as well as unidentified strains isolated from soil and insect cadavers were analyzed by PCR. Small amounts of crude sample lysates were assayed in a single PCR reaction containing 12 to 20 primers capable of distinguishing between the different insecticidal genes. Insecticidal activity predicted by the PCR screen was found to correspond with the insecticidal activity of insect bioassays. In addition to identifying strains with known insecticidal genes, the PCR screen can identify strains with altered electrophoretic patterns containing potentially novel genes. Images

Journal ArticleDOI
TL;DR: Evaluation of the data by using a risk assessment model developed for Giardia spp.
Abstract: Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.

Journal ArticleDOI
TL;DR: A method was developed for the detection of the fecal coliform bacterium Escherichia coli, using the polymerase chain reaction and gene probes, based on amplifying regions of the uid gene that code for beta-glucuronidase, expression of which forms the basis for fecalcoliform detection by the commercially available Colilert method.
Abstract: A method was developed for the detection of the fecal coliform bacterium Escherichia coli, using the polymerase chain reaction and gene probes, based on amplifying regions of the uid gene that code for beta-glucuronidase, expression of which forms the basis for fecal coliform detection by the commercially available Colilert method. Amplification and gene probe detection of four different regions of uid specifically detected E. coli and Shigella species, including beta-glucuronidase-negative strains of E. coli; no amplification was observed for other coliform and nonenteric bacteria. Images

Journal ArticleDOI
TL;DR: The data support the idea that plasmid DNA can enter the extracellular bacterial gene pool which is located at mineral surfaces in natural bacterial habitats and depends on the neutralization of negative charges on the DNA molecules and the mineral surfaces by cations.
Abstract: The adsorption of [3H]thymidine-labeled plasmid DNA (pHC314; 2.4 kb) of different conformations to chemically pure sand was studied in a flowthrough microenvironment. The extent of adsorption was affected by the concentration and valency of cations, indicating a charge-dependent process. Bivalent cations (Mg2+, Ca2+) were 100-fold more effective than monovalent cations (Na+, K+, NH4+). Quantitative adsorption of up to 1 microgram of negatively supercoiled or linearized plasmid DNA to 0.7 g of sand was observed in the presence of 5 mM MgCl2 at pH 7. Under these conditions, more than 85% of DNA adsorbed within 60 s. Maximum adsorption was 4 micrograms of DNA to 0.7 g of sand. Supercoil molecules adsorbed slightly less than linearized or open circular plasmids. An increase of the pH from 5 to 9 decreased adsorption at 0.5 mM MgCl2 about eightfold. It is concluded that adsorption of plasmid DNA to sand depends on the neutralization of negative charges on the DNA molecules and the mineral surfaces by cations. The results are discussed on the grounds of the polyelectrolyte adsorption model. Sand-adsorbed DNA was 100 times more resistant against DNase I than was DNA free in solution. The data support the idea that plasmid DNA can enter the extracellular bacterial gene pool which is located at mineral surfaces in natural bacterial habitats.

Journal ArticleDOI
TL;DR: The actinoplanetes had a near obligate requirement of seawater for growth, and this is presented as evidence that actinomycetes can be physiologically active in the marine environment.
Abstract: Actinomycetes were isolated from near-shore marine sediments collected at 15 island locations throughout the Bahamas. A total of 289 actinomycete colonies were observed, and all but 6 could be assigned to the suprageneric groups actinoplanetes and streptomycetes. A bimodal distribution in the actinomycete population in relation to depth was recorded, with the maximum numbers occurring in the shallow and deep sampling sites. This distribution can be accounted for by a rapid decrease in streptomycetes and an increase in actinoplanetes with increasing depth and does not conform to the theory that actinomycetes isolated from marine sources are of terrestrial origin. Sixty-three of the isolated actinomycetes were tested for the effects of seawater on growth. Streptomycete growth in nonsaline media was reduced by 39% compared with that in seawater. The actinoplanetes had a near obligate requirement of seawater for growth, and this is presented as evidence that actinomycetes can be physiologically active in the marine environment. Problems encountered with the enumeration of actinomycetes in marine sediments are also discussed.

Journal ArticleDOI
TL;DR: Evidence was found that chitin and cell walls of starter bacteria (Lactococcus lactis) supported survival of L. monocytogenes, which suggests that the pathogen may obtain carbon and energy sources during colonization of some foods, such as cheeses, by assimilating bacteria or molds that are present.
Abstract: A chemically defined minimal medium for Listeria monocytogenes has been developed by modification of Welshimer's medium. The growth factors required by L. monocytogenes Scott A are leucine, isoleucine, arginine, methionine, valine, cysteine (each at 100 mg/liter), riboflavin and biotin (each at 0.5 micrograms/ml), thiamine (1.0 micrograms/ml), and thioctic acid (0.005 micrograms/ml). Growth was stimulated by 20 micrograms of Fe3+ per ml as ferric citrate. Glucose (1%) and glutamine (600 mg/liter) are required as primary sources of carbon and nitrogen. Glucose could not be replaced by various organic acids or amino acids. Of several sugars tested, fructose, mannose, cellobiose, trehalose, maltose (weak), glycerol (weak), and the amino sugars glucosamine, N-acetylglucosamine, and N-acetylmuramic acid supported growth in the absence of glucose. Evidence was found that chitin and cell walls of starter bacteria (Lactococcus lactis) supported survival of L. monocytogenes, which suggests that the pathogen may obtain carbon and energy sources during colonization of some foods, such as cheeses, by assimilating bacteria or molds that are present.

Journal ArticleDOI
TL;DR: A protocol for transformation of intact Enterococcus faecalis cells by electroporation was developed through a systematic examination of the effects of changes in various parameters, including growth conditions, size, concentration, and purity of DNA used for transformation; and conditions used to select for transformants.
Abstract: A protocol for transformation of intact Enterococcus faecalis cells by electroporation was developed through a systematic examination of the effects of changes in various parameters, including (i) growth conditions; (ii) composition of the electroporation solution; (iii) electroporation conditions, such as field strength and resistance; (iv) size, concentration, and purity of DNA used for transformation; and (v) conditions used to select for transformants. Key features of this protocol include the use of exponential-phase cells grown in inhibitory concentrations of glycine and the use of an acidic sucrose electroporation solution. Frequencies of greater than 2 x 10(5) transformants per microgram of plasmid DNA were obtained for E. faecalis cells, whereas various strains of streptococci and Bacillus anthracis were transformed at frequencies of 10(3) to 10(4) transformants per microgram of plasmid DNA with the same protocol. A novel Escherichia coli-Streptococcus and Enterococcus shuttle cloning vector, pDL276, was constructed for use in conjunction with the electroporation system. This vector features a multiple cloning site region flanked by E. coli transcription termination sequences, a relatively small size (less than 7 kb), and a kanamycin resistance determinant expressed in both gram-positive and gram-negative hosts. Various enterococcal and streptococcal DNA sequences were cloned in E. coli (including sequences that could not be cloned on other vectors) and were returned to the original host by electroporation. The vector and electroporation system was also used to clone directly into E. faecalis.

Journal ArticleDOI
TL;DR: Purification by ammonium sulfate precipitation, gel filtration, and high-performance liquid chromatography resulted in a 474-fold increase in specific activity of lactacin F.
Abstract: Lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088 (NCK88), was purified and characterized. Lactacin F is heat stable, proteinaceous, and inhibitory to other lactobacilli as well as Enterococcus faecalis. The bacteriocin was isolated as a floating pellet from culture supernatants brought to 35 to 40% saturation with ammonium sulfate. Native lactacin F was sized at approximately 180 kDa by gel filtration. Column fractions having lactacin F activity were examined by electron microscopy and contained micelle-like globular particles. Purification by ammonium sulfate precipitation, gel filtration, and high-performance liquid chromatography resulted in a 474-fold increase in specific activity of lactacin F. The purified bacteriocin was identified as a 2.5-kDa peptide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The lactacin F peptide retained activity after extraction from SDS-PAGE gel slices, confirming the identity of the 2.5-kDa peptide. Variants of NCK88 that failed to exhibit lactacin F activity did not produce the 2.5-kDa band. Sequence analysis of purified lactacin F identified 25 N-terminal amino acids containing an arginine residue at the N terminus. Composition analysis indicates that lactacin F may contain as many as 56 amino acid residues.

Journal ArticleDOI
TL;DR: The results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type.
Abstract: Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14CH3HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominating estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demethylation were mainly 14CO2 as well as lesser amounts of 14CH4. Acetogenic activity resulted in fixation of some 14CO2 produced from 14CH3HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14CH4, while aerobic demethylation in freshwater sediments produced small amounts of both 14CH4 and 14CO2. Two species of Desulfovibrio produced only traces of 14CH4 from 14CH3HgI, while a culture of a methylotrophic methanogen formed traces of 14CO2 and 14CH4 when grown on trimethylamine in the presence of the 14CH3HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. However, aerobic demethylation in freshwater sediments as well as anaerobic demethylation in all sediments studied produced primarily carbon dioxide. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.

Journal ArticleDOI
TL;DR: Ultrasonic energy in the low-kilohertz frequency range is capable to some degree of inactivating certain disease agents that may reside in water and the physical mechanism of inactivation appears to be transient cavitation.
Abstract: Propagated (free-field) ultrasonic energy at a frequency of 26 kHz was used to expose aqueous suspensions of bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa), fungus (Trichophyton mentagrophytes), and viruses (feline herpesvirus type 1 and feline calicivirus) to evaluate the germicidal efficacy of ultrasound. There was a significant effect of time for all four bacteria, with percent killed increasing with increased duration of exposure, and a significant effect of intensity for all bacteria except E. coli, with percent killed increasing with increased intensity level. There was a significant reduction in fungal growth compared with that in the controls, with decreased growth with increased ultrasound intensity. There was a significant reduction for feline herpesvirus with intensity, but there was no apparent effect of ultrasound on feline calicivirus. These results suggest that ultrasound in the low-kilohertz frequency range is capable to some degree of inactivating certain disease agents that may reside in water. The physical mechanism of inactivation appears to be transient cavitation.