scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Environmental Contamination and Toxicology in 2021"


Journal ArticleDOI
TL;DR: The state of the science on groundwater contamination is reviewed in this paper, and the papers published in this special issue are summarized in terms of their contributions to the literature, and some key issues for advancing research on groundwater contamination are proposed.
Abstract: Groundwater contamination is a global problem that has a significant impact on human health and ecological services. Studies reported in this special issue focus on contaminants in groundwater of geogenic and anthropogenic origin distributed over a wide geographic range, with contributions from researchers studying groundwater contamination in India, China, Pakistan, Turkey, Ethiopia, and Nigeria. Thus, this special issue reports on the latest research conducted in the eastern hemisphere on the sources and scale of groundwater contamination and the consequences for human health and the environment, as well as technologies for removing selected contaminants from groundwater. In this article, the state of the science on groundwater contamination is reviewed, and the papers published in this special issue are summarized in terms of their contributions to the literature. Finally, some key issues for advancing research on groundwater contamination are proposed.

163 citations


Journal ArticleDOI
TL;DR: Results indicate that cation exchange is the dominant process affecting the concentration of Na+ and Ca2+ in the groundwater, and minerals dissolution/precipitation and human activities are the key factors that affect groundwater quality.
Abstract: Groundwater is essential for the sustainable development of the Guanzhong Basin, China, and its quality is mainly controlled by hydrogeochemical processes and anthropogenic pollution. This study used statistical and multivariate statistical analysis approaches to recognize the hydrogeochemical processes and affecting factors of groundwater in the central part of the Guanzhong Basin. Correlations among 14 hydrochemical parameters were statistically examined. Principal component analysis (PCA), factor analysis (FA), and hierarchical cluster analysis (HCA) techniques were applied to analyze the physicochemical variables to understand the affecting factors of groundwater quality in the study area. The correlation analysis results indicate that cation exchange is the dominant process affecting the concentration of Na+ and Ca2+ in the groundwater. Both the PCA and FA indicate that minerals dissolution/precipitation and human activities are the key factors that affect groundwater quality. All parameters except CO32- and pH increase from C1 to C4 obtained through the Q mode HCA. C4 has a hydrochemical type of SO4-Na·K, indicating that the sample of this cluster is primarily influenced by anthropogenic processes.

106 citations


Journal ArticleDOI
TL;DR: The overall information points to shifts from toxic to favorable effects in plant systems at lower REE concentrations (possibly suggesting hormesis) and the available evidence for REE use as feed additives may suggest positive outcomes at certain doses but requires further investigations before extending this use for zootechnical purposes.
Abstract: Rare earth elements (REEs) are key constituents of modern technology and play important roles in various chemical and industrial applications. They also are increasingly used in agricultural and zootechnical applications, such as fertilizers and feed additives. Early applications of REEs in agriculture have originated in China over the past several decades with the objective of increasing crop productivity and improving livestock yield (e.g., egg production or piglet growth). Outside China, REE agricultural or zootechnical uses are not currently practiced. A number of peer-reviewed manuscripts have evaluated the adverse and the positive effects of some light REEs (lanthanum and cerium salts) or REE mixtures both in plant growth and in livestock yield. This information was never systematically evaluated from the growing body of scientific literature. The present review was designed to evaluate the available evidence for adverse and/or positive effects of REE exposures in plant and animal biota and the cellular/molecular evidence for the REE-associated effects. The overall information points to shifts from toxic to favorable effects in plant systems at lower REE concentrations (possibly suggesting hormesis). The available evidence for REE use as feed additives may suggest positive outcomes at certain doses but requires further investigations before extending this use for zootechnical purposes.

59 citations


Journal ArticleDOI
TL;DR: The results show that ES and WS districts’ groundwater samples were more contaminated by the PAHs, which may be attributed to the presence of many small, medium, and large-scale industries and high vehicular density in these districts.
Abstract: The studies on polycyclic aromatic hydrocarbons (PAHs) occurrence, distribution, health risk, and composition in drinking water are limited in India and worldwide. The main objective of this study was to find the contaminant sources, composition, health risk, and distribution of USEPA’s 16 priority pollutant PAHs in the drinking water samples collected between July 2019 to September 2019 from six districts of Southern Jharkhand. The Σ16PAHs mean ± standard deviation [SD] concentration values were ordered as East Singhbhum (ES) (21.5 ± 14.8 ng L−1) > West Singhbhum (WS) (16.57 ± 13.21 ng L−1) > Saraikela Kharsawan (SK) (11.48 ± 9.92 ng L−1) > Khunti (KH) (10.32 ± 9.09 ng L−1) > Simdega (SM) (9.96 ± 7.85 ng L−1) > Gumla (GU) (9.41 ± 8.63 ng L−1). The results show that ES and WS districts’ groundwater samples were more contaminated by the PAHs, which may be attributed to the presence of many small-, medium-, and large-scale industries and high vehicular density in these districts. The concentrations of lower molecular weight ring (3-rings) and middle molecular weight ring (4-rings) PAHs were dominant throughout all drinking samples. The concentration of the 3-ring PAH Anthracene and 4-ring PAH Fluoranthene were dominant in all districts. The molecular ratios suggested that the potential sources of PAHs are fuel combustion and coal, grass, and wood burning. Risk assessment shows that the incremental lifetime cancer risk and risk index (RI) were ranged from 0.02 × 10−10 to 4.93 × 10−10 for children and 0.01 × 10−10 to 2.98 × 10−10 for adults. The RI values for seven carcinogenic PAHs were 8.83 × 10−10 for children and 7.38 × 10−10 for adults. Although the carcinogenic risks were within the permissible values, chronic exposure to PAHs through the ingestion of drinking water could still be a human health concern.

58 citations


Journal ArticleDOI
TL;DR: In this article, the authors used ultra-high pressure liquid chromatography with high resolution mass spectrometric detection with parallel reaction monitoring to detect 6PPD-quinone and 1,3-diphenylguanidine (DPG).
Abstract: Prompted by a recent report that 6PPD-quinone (6PPD-q), a by-product of a common tire manufacturing additive that is present in road runoff, is toxic to coho salmon (Oncorhynchus kisutch), extracts of water samples collected from an urban river were re-analyzed to determine if this compound was present in stormwater-influenced flows. In addition, extracts were analyzed for 1,3-diphenylguanidine (DPG), which is also used in tire manufacturing. Samples were originally collected in the fall of 2019 and winter of 2020 in the Greater Toronto Area of Canada from the Don River, a highly urbanized watershed in close proximity to several major multi-lane highways. These target compounds were analyzed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection with parallel reaction monitoring. Both 6PPD-q and DPG were detected above limits of quantification (i.e., 0.0098 µg/L) in all extracts. Maximum concentrations for 6PPD-quinone of 2.30 ± 0.05 µg/L observed in the river during storm events exceeded the LC50 for this compound for coho salmon (i.e., > 0.8 µg/L). In composite samples collected at intervals throughout one rain event, both compounds reached peak concentrations a few hours after initiation of the event (i.e., 0.52 µg/L for DPG and 2.85 µg/L for 6PPD-q), but the concentrations of 6PPD-q remained elevated above 2 µg/L for over 10-h in the middle of the event. Estimates of cumulative loads of these compounds in composite samples indicated that kg amounts of these compounds entered the Don River during each hydrological event, and the loads were proportional to the amounts of precipitation. This study contributes to the growing literature indicating that potentially toxic tire-wear compounds are present at elevated levels and are transported via road runoff into urban surface waters during rain events.

49 citations


Journal ArticleDOI
TL;DR: In this paper, the presence, composition, and characterization of microplastic pollution in different tissues (brain, gill, muscle, and gastrointestinal tract) of commercial fish species [red mullet (Mullus barbatus) and pontic shad (Alosa immaculata Bennett 1835)] from the Black Sea were investigated.
Abstract: The researches on MPs in commercial marine fish are very limited although in marine environments microplastic (MPs) pollution is a global problem. In this study, the presence, composition, and characterization of MPs in different tissues (brain, gill, muscle, and gastrointestinal tract) of commercial fish species [red mullet (Mullus barbatus) and pontic shad (Alosa immaculata Bennett 1835)] from the Black Sea were investigated. M. barbatus (demersal) and A. immaculata (pelagic) fish were preferred in the selection of fish species in order to represent demersal and pelagic environments. After dissected the fish, MPs were obtained from the tissues by extraction using the flotation method; then the MPs were counted and categorized according to shape, size, and color. The composition of the MPs was determined via ATR–FTIR spectroscopy. In terms of microplastic abundance in fish tissues, the gastrointestinal tract (40.0%) ranked first in both fish species, while the lowest MPs density was determined in brain tissues (7.0%). After the gastrointestinal tissue, gills were identified as the second tissue with the highest MPs density. Regardless of fish species, MPs characterization was mainly fibrous (51.0%), black colored (49.0%), and 50–200 µm in size (55.0%). Among the nine different polymers determined, polychloroprene (18.8%) and polyamide (15.0%) were found most frequently. This research provides data for tissue-based assessment of MPs in fish. The obtained data showed that MPs (one of the anthropogenic pollutants) are quite high in all tissues regardless of fish species. Moreover, it has emerged that these two fish species are suitable for monitoring microplastics in the study area.

47 citations


Journal ArticleDOI
TL;DR: In this paper, the quality of groundwater was assessed in a semi-arid region of India by using an entropy weighted water quality index (EWQI) and a pollution index of groundwater (PIG).
Abstract: In this study, the quality of groundwater was assessed in a semi-arid region of India by using an entropy weighted water quality index (EWQI) and a pollution index of groundwater (PIG). The EWQI and PIG methods were used to evaluate data on physicochemical parameters in relation to drinking water quality standards. Groundwater samples were collected from the Dubbak region, Telangana state, India, and were analyzed for pH, total hardness, electrical conductivity, total dissolved solids, bicarbonate (HCO3−), chloride (Cl−), sulfate (SO42−), nitrate (NO3−), fluoride (F−), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), and potassium (K+). The groundwater of the study region is alkaline in nature. The abundance of cations and anions based on their mean values is in the following order: Na+ > Ca2+ > Mg2+ > K+ and Cl− > HCO3− > NO3− > SO42− > F−, respectively. The calculated EWQI values ranged from 49.0 to 174.6, with an average of 93.3. Overall, EWQI data showed that only 60% of groundwater samples were of suitable quality for drinking, although only marginally, whereas the remaining 40% of samples were unsuitable for drinking purposes and would therefore require treatment. The values of PIG varied from 0.5 to 1.8, with an average of 1.0, which showed that only 63% of groundwater samples from the study area were suitable for drinking purposes.

46 citations


Journal ArticleDOI
TL;DR: The multivariate statistical analysis indicates that anthropogenic activities, such as agricultural practices, including excessive fertilizer application and improper domestic and cattle waste management, are probable causes of groundwater contamination through NO3−, Cl−, Na+, and K+.
Abstract: Groundwater contamination in the Indo-Gangetic alluvial plain has reportedly been affected by various factors, such as mineral dissolution, overexploitation, precipitation, and ion exchange. This study was designed to interpret the hydrochemical fluctuations in the groundwater sources of a rural area in Raebareli district. Groundwater is slightly alkaline and affected by the issues of fluoride, salinity, hardness, and nitrate. The Pollution Index of Groundwater significantly categorize 57% and 79% of the samples under the “insignificant pollution” category during pre-monsoon and post-monsoon periods. The Health risk assessment indicated the high susceptibility of children toward health risks. It also indicated that fluoride had greater impact than nitrate in the study area. The multivariate statistical analysis indicates that anthropogenic activities, such as agricultural practices, including excessive fertilizer application and improper domestic and cattle waste management, are probable causes of groundwater contamination through NO3−, Cl−, Na+, and K+. Furthermore, the base exchange index classified 71.43% samples in pre-monsoon and 78.57% in post-monsoon as Na-HCO3 type. The meteoric genesis index suggested that 78.57% and 85.71% of the samples belong to shallow meteoric water percolation type during pre- and post-monsoon periods, respectively. The Piper plots revealed that HCO3–Ca·Mg and SO4·Cl–Na + K type are the prominent facies in the area, with dominance of alkalis and weak acids. According to Gibbs plot, majority of the samples fall under “rock dominance” suggesting that “rock-water” interaction was the dominant natural process controlling the groundwater chemistry.

44 citations


Journal ArticleDOI
TL;DR: In this article, potential sources of groundwater pollution in Tongchuan City, China were qualitatively identified based on 14 key water quality indicators of 59 groundwater samples, and the contribution of each source to groundwater quality was quantitatively evaluated.
Abstract: Potential sources of groundwater pollution in Tongchuan City, China, were qualitatively identified based on 14 key water quality indicators of 59 groundwater samples, and the contribution of each source to groundwater quality was quantitatively evaluated. Groundwater pollution sources were analyzed using PMF and PCA-APCS-MLR models, and their applicability in groundwater pollution assessment in Tongchuan City was tested. Results indicate that both models identified four sources of groundwater contamination. Natural evolution was the main cause of groundwater pollution in the study area, followed by the coal industry, agriculture, and urbanization. Although the spatial distribution of pollution sources in the two models differed, the urbanized area to the east of the study area was more severely affected by sewage discharge, the west was more obviously affected by the coal industry, and the north was mainly polluted by agriculture. Both of the fitting results of the two models are good, but R2 values obtained by the PMF model (0.4440-0.9991) were generally higher than those obtained by the PCA-APCS-MLR model (0.5180-0.9530), indicating that PMF model results were more accurate than the PCA-APCS-MLR model.

44 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the effects of reduced anthropogenic activity on groundwater quality by collecting 30 locations in the rapidly developing industrial and residential area of the Coimbatore region in southern India.
Abstract: Samples of groundwater were collected during a post-monsoon period (January) and a pre-monsoon period (May) in 2020 from 30 locations in the rapidly developing industrial and residential area of the Coimbatore region in southern India. These sampling periods coincided with times before and during the lockdown in industrial activity and reduced agricultural activity that occurred in the region due to the COVID-19 pandemic. This provided a unique opportunity to evaluate the effects of reduced anthropogenic activity on groundwater quality. Approximately 17% of the wells affected by high fluoride concentrations in the post-monsoon period returned to levels suitable for human consumption in samples collected in the pre-monsoon period. This was probably due to ion exchange processes, infiltration of rainwater during the seasonal monsoon that diluted concentrations of ions including geogenic fluoride, as well as a reduction in anthropogenic inputs during the lockdown. The total hazard index for fluoride in the post-monsoon samples calculated for children, adult women, and adult men indicated that 73%, 60%, and 50% of the groundwater samples, respectively, had fluoride levels higher than the permissible limit. In this study, nitrate pollution declined by 33.4% by the pre-monsoon period relative to the post-monsoon period. The chemical facies of groundwater reverted from the Na-HCO3-Cl and Na-Cl to the Ca-HCO3 type in pre-monsoon samples. Various geogenic indicators like molar ratios, inter-ionic relations along with graphical tools demonstrated that plagioclase mineral weathering, carbonate dissolution, reverse ion exchange, and anthropogenic inputs are influencing the groundwater chemistry of this region. These findings were further supported by the saturation index assessed for the post- and pre-monsoon samples. COVID-19 lockdown considerably reduced groundwater pollution by Na+, K+, Cl-, NO3¯, and F- ions due to shutdown of industries and reduced agricultural activities. Further groundwater quality improvement during lockdown period there is evidence that the COVID-19 lockdown by increased HCO3¯ ion concentration. Overall results illustrate the positive benefits to groundwater quality that could occur as a result of measures to control anthropogenic inputs of pollutants.

40 citations


Journal ArticleDOI
TL;DR: A novel low-temperature roasting associated with alkali was applied to synthesize an eco-friendly adsorbent using coal fly ash, and the enhanced adsorption ability of Cd 2+ by modified coalFly ash was attributed to ion-exchange, co-precipitation, and complexation.
Abstract: Cadmium (Cd) is a harmful element to human health and biodiversity. The removal of Cd from groundwater is of great significance to maintain the environmental sustainability and biodiversity. In this work, a novel low-temperature roasting associated with alkali was applied to synthesize an eco-friendly adsorbent using coal fly ash. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy were applied to analyze the physical and chemical characteristics of the adsorbent. The experiments show that a significant improvement in specific surface area and activity of adsorbent was observed in this study. The functional groups of Na–O and Fe–O were verified to be beneficial in the removal of Cd2+. The material capacity to adsorb Cd2+ was considerably improved, and the maximum uptake capacity was 61.8 mg g−1 for Cd2+ at 25 °C. Furthermore, pH and ionic strength play critical roles in the adsorption process. The Langmuir and pseudo-second-order models can appropriately describe the adsorption behavior, and the enhanced adsorption ability of Cd2+ by modified coal fly ash was attributed to ion-exchange, co-precipitation, and complexation. Higher sorption efficiency was maintained after two regeneration cycles. These results offer valuable insights to develop high-performance adsorbent for Cd2+ removal.

Journal ArticleDOI
TL;DR: In this paper, the authors dealt with the health risk assessment due to the heavy metals (Cd, Cr, Cu, Co, Mn, Pb, Ni, and Zn) in groundwater in the industrial township of Virudhunagar district.
Abstract: The present investigation deals with the health risk assessment due to the heavy metals (Cd, Cr, Cu, Co, Mn, Pb, Ni, and Zn) in groundwater in the industrial township of Virudhunagar district. Twenty groundwater samples were collected, and the measured concentration of the heavy metals follows the order Pb > Ni > Zn > Co > Cr > Cd > Cu > Mn. The metal pollution indices (heavy metal evaluation index, Heavy metal pollution index, degree of contamination) were calculated using the measured heavy metal concentrations. The samples collected nearer to the industrial zone have elevated concentrations of Pb, Cd, and Ni. The carcinogenic and noncarcinogenic risks were calculated based on the measured heavy metals concentration and average daily intake of water. The calculated carcinogenic risk values (5.66 × 10−3–1.56 × 10−2) (Pb, Cd, and Ni) exceed the acceptable limit of 10−6–10−4. The noncarcinogenic risk exceeds the acceptable limit of one for the heavy metals Pb and Cr. The higher carcinogenic and noncarcinogenic risk values reveal that the study area has health risks due to Pb, Cd, Ni, and Cr metals. Furthermore, factor analysis and cluster analysis showed that the industrial impact and wastage dumpsites are the prime sources for heavy metal contamination in groundwater of the study area.

Journal ArticleDOI
TL;DR: In this article, the authors examined the appropriateness of groundwater resources for drinking purposes in the Bilate River Basin of Southern Main Ethiopian Rift, Ethiopia, and examined the human health risk factors associated with the intake of high fluoride groundwater.
Abstract: The main focus of the present research was to examine the appropriateness of groundwater resources for drinking purposes in the Bilate River Basin of Southern Main Ethiopian Rift, Ethiopia. The groundwater quality index (GWQI), fluoride pollution index (FPI), and human health risk were used to examine the human health risk factors associated with the intake of high fluoride groundwater. For this purpose, 29 groundwater samples were collected from the existing wells and were analyzed for various physicochemical parameters. The dominant cation was Na+, followed by Ca2+, Mg2+, and K+. The dominant anion was HCO3−, followed by Cl−, SO42−, and F−. The Gibbs plot shows that rock-water interactions are the dominant factor controlling the groundwater chemistry. By using the GWQI, the quality of groundwater samples was 31% excellent, 21% good, 31% poor, and 17% very poor. The fluoride concentration in groundwater ranges from 0.2 to 5.60 mg/L (mean, 2.10 mg/L). 59% (i.e., 17 wells) of the groundwater samples were not suitable for drinking, because they surpassed the drinking water quality limit of 1.5 mg/L. The remaining 41% (i.e., 12 wells) of the samples were suitable for drinking. The FPI indicates that 51.72% of the wells were highly polluted by fluoride. The noncarcinogenic health risk varies from 0.75 to 8.44 for children (83%), 0.34–3.84 for women (62%), and 0.27–3.01 for men (52%), which indicates that children are at higher health risk than women and men due to the physiological condition and the rates of ingestion.

Journal ArticleDOI
N. Subba Rao1, A. Dinakar1, B. Karuna Kumari, D Karunanidhi, T Kamalesh1 
TL;DR: The present study will help decision makers to plan groundwater treatment measures within vulnerable zones by delineating the seasonal and spatial variations for vulnerable zones related to the drinking groundwater quality index (DGQI) and irrigation groundwaterquality index (IGQI).
Abstract: Evaluation of seasonal and spatial variations in vulnerable zones for poor groundwater quality is essential for the protection of human health and to maintain the crop yields. With this objective, groundwater samples were collected seasonally (i.e., pre- and post-monsoon) from the Yellareddygudem watershed of Telangana, India. These samples were analysed for major chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, K+, [Formula: see text], Cl-, [Formula: see text], [Formula: see text], and F-). Geographical information system (GIS) tools were used to delineate the seasonal and spatial variations for vulnerable zones related to the drinking groundwater quality index (DGQI) and irrigation groundwater quality index (IGQI). Geochemical facies and relations, Piper diagrams, and principal component analysis indicated that the weathering, dissolution, leaching, ion exchange, and evaporation were the primary processes controlling the groundwater quality seasonally. Human influences were the secondary factors. The TDS, Na+, K+, Cl-, [Formula: see text], and F- parameters were observed to be within the drinking water quality standard limits in most post-monsoon groundwater samples. However, the DGQI showed an increase in the number of samples with unsuitable quality for drinking in the post-monsoon period compared with the pre-monsoon period. The IGQI demonstrated that the number of samples with unsuitable quality for irrigation increased in the post-monsoon period compared to the pre-monsoon period. The differences in the vulnerable zones between the pre- and post-monsoon periods were due to variations in groundwater recharge, following the topography. Thus, the present study will help decision makers to plan groundwater treatment measures within vulnerable zones.

Journal ArticleDOI
TL;DR: Multivariate statistical analyses indicate that As mobilization in groundwater is associated with pH, EC, Ni, Cu, and Ba depending on the redox conditions of the aquifer, controlled mainly by geogenic processes.
Abstract: This study was conducted to determine the concentrations of trace elements, their sources, and human health risks associated with arsenic contamination in groundwater of the Nigde Municipality, south-central Turkey. Fourteen groundwater samples were collected from groundwater supply sources fed by the Nigde water distribution system and were analysed for Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, and Ba concentrations. Multivariate statistical analyses were applied to decipher the source and interrelationships among trace elements in groundwater. The groundwater is mainly tapped from Quaternary alluvial and volcanic aquifers of the Nigde Massif. The pH of groundwater is slightly acidic to neutral, which controls the solubility and mobility of the trace elements. The mean concentrations of the trace elements vary in the order Zn > Fe > Ba > As > Cr > Ni > Se > Cu > Co > Mn > Al. All of the trace element concentrations comply with the maximum permissible values provided by the Turkish Standards Institution and the World Health Organization, except Zn, Cr, and As. However, approximately 7.14% of the studied samples are contaminated with Zn and Cr, whereas 86% are contaminated with As. The As concentrations range from 9.47 to 32.9 µg/L with an average value of 16.8 µg/L. Contamination assessment indicates that the As contamination is dominant in the southern and southwestern parts of the area. The primary source of As in groundwater is attributed to geogenic processes involving weathering and dissolution of bed rocks and other factors, such as pH conditions, adsorption, and surface complexation. Three bimetallic complex associations are distinguished in groundwater: Fe-coordination group, As-coordination group and Ba-coordination group, all showing strong positive correlation with Cu and Ni. The As-coordination group is the most dominant in groundwater, which resulted in the high As content of groundwater. Multivariate statistical analyses indicate that As mobilization in groundwater is associated with pH, EC, Ni, Cu, and Ba depending on the redox conditions of the aquifer, controlled mainly by geogenic processes. The carcinogenic risk of arsenic affecting children and adults reaches 2 × 10−4 and 3 × 10−4, respectively, exceeding the guideline value of 1 × 10−4. The estimated hazard quotient for children is in the range of 1.79–6.21, whereas that of adults is 0.77–2.66, indicating that children in the municipality are more exposed to the noncarcinogenic effects of the consumption of high groundwater arsenic.

Journal ArticleDOI
TL;DR: In this article, three different types of microplastics were aged by the thermal activation K2S2O8 method to investigate the adsorption behavior for sulfamethoxazole (SMX) in aqueous solution.
Abstract: In this study, three different types of microplastics were aged by the thermal activation K2S2O8 method to investigate the adsorption behavior for sulfamethoxazole (SMX) in aqueous solution. The effects of pH, salinity and humic acid (HA) on adsorption behavior were also investigated. At the same time, the morphology and functional groups of microplastics before and after adsorption were characterized. As the aging time increased, the adsorption capacity of the microplastics also increased significantly. Whether it was pristine or aged, polylactic acid (PLA) had the highest adsorption capacity. The adsorption capacity of microplastics was the largest under acidic conditions, and its adsorption capacity decreased significantly in alkaline solutions. The presence of salinity inhibited the adsorption of SMX on polyethylene terephthalate (PET) and PP, but the adsorption capacity of PLA increases when salinity was above 10‰. The adsorption of SMX on microplastics was promoted by HA. When the concentration of HA was 20 mg/L, the adsorption capacity of PLA and PET decreased. Kinetic and isotherm fits were applied to the adsorption process. The increase in sorption capacity was related to the development of holes and cracks and the enhanced number of surface oxygen-containing functional groups. The adsorption kinetics to pristine microplastics conformed to a pseudo-first-order kinetic model, while the kinetics of the aged microplastics conformed to a pseudo-second-order kinetic model. It implies that the adsorption of SMX by aging microplastics involves multiple processes. The adsorption isothermal adsorption process of SMX by microplastics accorded with Freundlich model, belonging to multi-layer adsorption.

Journal ArticleDOI
TL;DR: In this article, the authors focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses.
Abstract: Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.

Journal ArticleDOI
TL;DR: The health risk assessment highlights that children are more exposed to the noncarcinogenic health risks of nitrate than adult females and males in the study region, and specific groundwater quality measures should be formulated to address the health risk problems for children.
Abstract: Groundwater nitrate pollution is a serious threat to human health in many regions of the world. The present study was performed to assess the nitrate contamination in groundwater in the region of Nirmal province, South India, where people purely depend on groundwater for drinking purposes. The associated human health risks for different age groups (male, female, and children) also were evaluated based on the United States Environmental Protection Agency model. Results indicate that nitrate concentration in groundwater is in the range of 0.8–130 mg/L with a mean of 36.51 mg/L. Furthermore, 26.47% of groundwater samples exceeded the WHO drinking water guidelines for NO3− in the study region. The contribution of oral ingestion is very higher than the dermal contact in the total hazard quotient or noncarcinogenic health risk. The total hazard quotient values ranged from 0.02 to 3.13 for adult males, 0.02 to 3.70 for adult females, and 0.03 to 4.32 for children. The health risk assessment highlights that children are more exposed to the noncarcinogenic health risks of nitrate than adult females and males in the study region. Therefore, specific groundwater quality measures should be formulated to address the health risk problems for children in the study region.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overall socioeconomic and environmental perspective of the rare earth elements (REE) industry with a central focus on environmental impacts of various REE-related activities.
Abstract: Rare earth elements (REEs) are increasingly critical to the high-technology and low-carbon economy. With a shift to sustainable socioeconomic development that aims to be less fossil fuel dependent, global demand for REEs continues to rise, despite their uncertain supply chain and high environmental impact of production. Here, we review recent research on REEs, including global reserve assessment, REE-based applications, major REE production pathways, environmental impacts, and the potential to leverage circular economies within the REE industry. The main objective of this review is to provide an overall socioeconomic and environmental perspective of the REE industry with a central focus on environmental impacts of various REE-related activities. The literature reveals significant interest in extracting REEs from secondary materials (e.g., tailings, bauxite residues, coal combustion ash) and electronic wastes. However, some of these REE recovery processes are not yet economically profitable and environmental-friendly. Continued technological advancements and increasing demands for REEs may entice countries with recently discovered REE reserves to break the current monopolistic REE supply chain. Furthermore, the sustainability of REE usage may also depend on consumer awareness of environmental and human health impacts associated with end-of-life electronics that contain REEs. On the other hand, REEs may show promise in sustainable agriculture and environmental applications. Nevertheless, further research on REE ecotoxicological impacts is required to establish environmental regulations that protect the environment and human health.

Journal ArticleDOI
TL;DR: Evidence is provided of the embryotoxic and teratogenic status of Midstream and the embryOToxicity of Basta and the need to further characterise the physiological and ecological impacts of these formulations to ensure responsible use and the safety of amphibians and other wildlife.
Abstract: Globally, amphibians are experiencing widespread abnormalities and population declines. One potential contributor to these challenges is the use of pesticides, particularly aquatic herbicides applied to aquatic habitats inhabited by amphibians. Critical issues of concern are the potential toxicity and teratogenicity of these herbicides towards amphibians. Using the FETAX protocol, three globally used formulations, including diquat dibromide (Midstream), glufosinate ammonium (Basta), and imazapyr (Arsenal), were assessed for embryotoxicity, teratogenicity, and growth inhibition. Developing Xenopus laevis embryos were exposed for 96 h at concentrations of 0.5–3.0 mg/L, 1.6–3.0 mg/L, and 20–45 mg/L for Midstream, Basta, and Arsenal respectively. The 96-h LC50 estimates were 0.83 mg/L acid equivalent (a.e.), 36 mg/L a.e., and 2.2 mg/L a.e., whereas the EC50 estimates were 0.24 mg/L a.e., 28.13 mg/L a.e., and 2.01 mg/L a.e. for the Midstream, Arsenal, and Basta formulations, respectively. These two estimates produced Teratogenic Index of 3.5, 1.3, and 1.1 for Midstream, Arsenal, and Basta, respectively, indicating a high risk of malformation induction by Midstream and moderate risk for Arsenal. Regarding growth inhibition, lowest observable effect concentrations of 0.5 mg/L, 25 mg/L, and 2.0 mg/L were computed for Midstream, Arsenal, and Basta, respectively, producing the minimum concentration inhibiting growth (MCIG) ratios of 0.62, 0.69, and 0.89 for the three formulations. These MICG values are higher than the standard 0.30 growth inhibitors benchmark, suggesting that the formulations are not growth inhibitors at the evaluated concentrations. This study provides evidence of the embryotoxic and teratogenic status of Midstream and the embryotoxicity of Basta. There is a need to further characterise the physiological and ecological impacts of these formulations to ensure responsible use and the safety of amphibians and other wildlife.

Journal ArticleDOI
TL;DR: In this article, surface water samples from two rivers adjacent to high traffic highways in the Greater Toronto Area in Ontario, Canada were collected from the Don River and Highland Creek during rain events and a period of rapid snowmelt and analyzed using liquid chromatography with high-resolution mass spectrometry.
Abstract: Hexamethoxymethyl-melamine (HMMM) is used as a crosslinking agent in resins and plastics and in the manufacture of tires. In the present study, surface water samples were collected from two rivers adjacent to high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples collected from the Don River and Highland Creek during rain events and a period of rapid snowmelt were preconcentrated using solid phase extraction and analyzed using liquid chromatography with high-resolution mass spectrometry. Elevated concentrations (> 1 µg/L) of HMMM were detected in surface waters during rain events in October of 2019 and during snow melt in early March of 2020. There were lower average concentrations of HMMM detected during rain events in the winter and spring of 2020. Temporal profiles of changes in the concentrations of HMMM in composite samples collected every 3 h during a rain event in October 2019 closely corresponded to the hydrograph profiles at the sampling sites, with the HMMM concentrations peaking > 6 h after the peak in water levels. This work contributes to the literature showing that HMMM is a ubiquitous contaminant of urban watersheds and that runoff from roads is a vector for the transport of this compound into urban surface waters.

Journal ArticleDOI
Abstract: Exposure to fluoride concentrations above a threshold of 1.5 mg/L can cause joint pains, restricted mobility, skeletal and dental fluorosis. This study aims to determine the hydrochemical evolution of the fluoride-rich groundwater and estimate the risk of fluoride exposure to the residents of semi-arid northeastern part of Rajasthan, India. The methodology involves measurement of fluoride and other ionic concentrations in groundwater using ion chromatography, followed by an estimation of the cumulative density function and fluorosis risk. The fluoride concentration in water samples varied from 0.04 to 8.2 mg/L with 85% samples falling above the permissible limit. The empirical cumulative density function was used to estimate the percentage and degree of health risks associated with the consumption of F− contaminated water. It is found that 55% of the samples indicate risk of dental fluorosis, 42% indicate risk of deformities to knee and hip bones, and 18% indicate risk of crippling fluorosis. In addition, instances of high nitrate concentrations above the permissible limit of 45 mg/L are also found in 13% of samples. The fluoride rich groundwater is mainly associated with the Na–HCO3–Cl type water facies while low fluoride groundwater shows varied chemical facies. The saturation index values indicate a high probability of a further increase in F− concentration in groundwater of this region. The calculated fluoride exposure risk for the general public in the study area is 3–6 times higher than the allowed limit of 0.05 mg/kg/day. Based on the results of this study, a fluorosis index map was prepared for the study area. The northern and northeastern parts are less prone to fluorosis, whereas the south-central and southwestern parts are highly vulnerable to fluorosis. The inferences from this study help to prioritize the regions that need immediate attention for remediation.

Journal ArticleDOI
TL;DR: In this paper, the current concentrations of 4-nonylphenols, octylphenol, and nonyl phenol ethoxylates in the Canadian freshwater environment were determined and past regulatory actions were beneficial to the environment.
Abstract: Nonylphenol, octylphenol, and nonylphenol ethoxylates are manmade compounds that are only discharged in the environment due to anthropogenic activities. The objectives of this study were to determine the current concentrations of these substances in the Canadian freshwater environment and to determine if past regulatory actions were beneficial to the environment. Freshwater samples (n = 241) were collected and analysed for 4-nonylphenols (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), and octylphenols at 35 sites in Canada from 2014 to 2019 with individual compound concentrations ranging from 1.29 to 477.22 ng/L. In addition, 18–65% of the samples were reported to be under the laboratory detection limit, depending on the compound. Sampling sites were categorised into five groups based on the dominant activities present upstream in their watersheds: mixed use sites; municipal waste water treatment plant (MWWTP)-associated sites; textile mill-associated sites; urban; and reference sites. All four compounds in the study were detected more frequently in urban and MWWTP-associated sites than at other locations. Additionally, there is a statistically significant (p < 0.05) downward temporal trend in NP concentrations in Canadian surface waters from 2014 to 2019. There were no exceedances of the Canadian Water Quality Guideline of 1000 ng/L.

Journal ArticleDOI
TL;DR: The first data on the occurrence and risk assessment of the target fluoroquinolones in wastewater from Nigerian hospital WWTPs is presented and revealed the importance of developing local and nationwide surveys of fluoroquolone antibiotics in the Nigerian aquatic environment.
Abstract: Hospital wastewater is regarded as a primary and very important source of antibiotics in the aquatic environment. Studies on the analysis, occurrence, and ecological risk assessment of fluoroquinolone antibiotics in wastewater are still limited in Africa. A quick, easy, cheap, effective, rugged, and safe extraction method was optimized and applied for determination of three fluoroquinolone antibiotics (ciprofloxacin, norfloxacin, and ofloxacin) in wastewater from two Nigerian hospital wastewater treatment plants (WWTPs) and effluent receiving water. Separation, detection, and quantification of target fluoroquinolone antibiotics were performed by high-performance liquid chromatography. Ecological risk of the three fluoroquinolone antibiotics was evaluated for three trophic levels: fish, daphnid, and algae. The method LODs were 4.1 µg L−1, 7.0 µg L−1, and 18.5 µg L−1 for ciprofloxacin, norfloxacin, and ofloxacin, respectively. Satisfactory recoveries and precisions were achieved, in addition to the correlation coefficients of greater than 0.993. Target fluoroquinolones were quantified in influents up to 228 µg L−1 (UCH influent) for ciprofloxacin, 561 µg L−1 (Ijaiye influent) for norfloxacin, and 198 µg L−1 (UCH influent) for ofloxacin. Norfloxacin had the highest concentration (386 µg L−1) in effluent receiving water. All three fluoroquinolones posed low risk to fish, whereas ciprofloxacin and norfloxacin presented moderate risk to daphnid and algae. To the best of our knowledge, this work presents the first data on the occurrence and risk assessment of the target fluoroquinolones in wastewater from Nigerian hospital WWTPs. The findings revealed the importance of developing local and nationwide surveys of fluoroquinolone antibiotics in the Nigerian aquatic environment.

Journal ArticleDOI
TL;DR: In this paper, the authors assess the quality of different drinking water sources, impacts of poor water quality on human health, and to apportion pollution source(s) of the district Bajaur, Pakistan.
Abstract: The focus of the present study was to assess the quality of different drinking water sources, impacts of poor water quality on human health, and to apportion pollution source(s) of the district Bajaur, Pakistan. Drinking water samples (n = 331) were randomly collected from springs, hand pumps, open wells, and tube wells and analyzed for physicochemical parameters including toxic elements, and bacteriological contamination (i.e., Escherichia coli). Furthermore, a questionnaire survey was conducted to record the cases of waterborne diseases in the study area. The results showed that total suspended solids and bacteriological contamination exceeded the permissible limits of the WHO in all four of the water sources. Among the potentially toxic elements, Cd, Pb, and Mn were above the permissible limits of the WHO in some samples. The hazard index for spring water was found to exceed the toxicity level (i.e., HI > 1) set by US EPA for both adults and children, while the sources from hand pumps, open wells, and tube wells were within the safe limit. The order for the overall safety level for water quality in the study area was tube wells > open wells > hand pumps > springs. The pollution source apportionment statistics revealed that both geogenic and anthropogenic activities are the sources of drinking water contamination. The results of the questionnaire survey indicated that reports of waterborne diseases were highest in respondents who took their drinking water from springs, whereas reports of diseases were moderate in respondents taking their water from open wells and hand pumps and lowest in respondents taking their water from tube wells. Based on the findings of the study, the tube well source of water is recommended for drinking water purposes.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in groundwater and leachate around selected waste dumpsites from two southwestern states of Nigeria.
Abstract: Polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in groundwater and leachate around selected waste dumpsites from two southwestern states of Nigeria were investigated. Samples were Soxhlet-extracted using hexane/methylene chloride mixture and cleaned-up with preconditioned solid-phase extraction cartridges. The ∑PAHs (PCBs) (all in µg/L) in the boreholes, leachate, and hand-dug well across all locations ranged from below detection limit (BDL) to 0.62 (BDL to 0.067), 1.16 to 9.96 (0.003 to 0.041), and BDL to 0.01 (0.001-0.031), respectively. Low molecular weight-PAHs accounted for ≥61% of ∑PAHs detected across all locations. The highly chlorinated hexa-PCBs [2,2',3,4,4',5'-HeCB(#180), 2,2',3,4',5',6-HeCB(#34) and 2,2',4,4',5,5'-HeCB(#153)] dominated the entire congener profiles. Pyrene and 2,3',4,4',5-PeCB(#118) constituted 56% and 58% of the ∑PAHs and ∑PCBs, respectively. Sampled water is not adequately safe for drinking and may pose cancer risk. This study should be sustained for health risk and sustenance of an enduring ecological integrity.

Journal ArticleDOI
TL;DR: In this article, an electrocoagulation with iron electrodes has been assessed as a treatment technology for arsenic removal from groundwater to reach concentrations below 0.01 µg/L (WHO limit).
Abstract: Arsenic contamination in drinking water is a great concern in different regions of the world as well as in India. Several technologies have been investigated to remove arsenic from water, such as coagulation and co-precipitation, ion exchange, adsorption, and reverse osmosis. In the present research, electrocoagulation with iron electrodes has been assessed as a treatment technology for arsenic removal from groundwater to reach concentrations below 0.01 mg/L (WHO limit) and which is technically effective, affordable for the local area, and easy to operate and maintain. Electrochemically generated iron is converted to hydrated ferric oxide within the contaminated water, which takes up the arsenic from water. A downstream filtration unit (sand or activated alumina) is applied to remove ferric hydroxide flocs produced during the process. The laboratory experiments were conducted in a batch reactor using iron plates as electrodes with monopolar configuration to study the effects of initial pH and electro-charge loading (ECL) on arsenic removal. The optimum operating condition was observed for an electro-charge loading of 25–30 Coulombs/L at pH 7.0 and an initial arsenic concentration of 0.2 mg/L. Two field trials were implemented in West Bengal after suitably designing the electrocoagulation system. Arsenic removal was significant (75–80%) delivering safe water with arsenic below 0.01 mg/L (acceptable limit). Passivation of the electrodes occurred during the operation and calcium-based (including iron) deposition was observed on the cathodes. Passivation is avoidable after running regular polarity reversal of the electrodes.

Journal ArticleDOI
TL;DR: In this article, the authors investigated whether exposure to three concentrations (0.15, 15, and 45μg/L) of IMI for 96h alters responses in zebrafish.
Abstract: Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemical parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 15, and 45 μg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity (AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish exposed to the 45 μg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 μg/L of IMI decreased episodes of erratic movement in the zebrafish. Exposures to IMI at a concentration of 45 μg/L decreased the time spent in erratic movements and increased the time spent with no movement (i.e., “freezing”). Glutathione S-transferase (GST) activity was increased in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 μg/L. Brain AChE activity was reduced and the levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 μg/L. Lipid peroxidation measured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures of fish over 96 h to IMI at a nominal concentration of 45 μg/L caused more extensive sublethal responses in zebrafish, but this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.

Journal ArticleDOI
TL;DR: In this article, the occurrence of heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in indoor dust samples collected from 33 urban and rural areas in 11 provinces, China.
Abstract: In this study, the occurrence of heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) was investigated in indoor dust samples collected from 33 urban and rural areas in 11 provinces, China. The concentrations of the selected heavy metals were determined by an inductively coupled plasma mass spectrometry. The mean concentrations of Zn (166 mg kg−1), Pb (40.7 mg kg−1), Cr (19.8 mg kg−1), Cu (16.9 mg kg−1), and Cd (2.29 mg kg−1) in indoor dust are in low or moderate levels compared with other countries or regions. Cd was significantly enriched with the highest enrichment factor of 23.7, followed by Zn, Pb, Cu, and Cr, which were all lower than 3. The concentrations of Pb from Northern China (61.4 mg kg−1) were significantly higher than those from Southern China (8.88 mg kg−1). The concentrations of heavy metals in indoor dusts from rural areas were higher than those from urban areas except for Cu. The multivariate analysis of variance revealed that wall cover, fuel types, and air conditioning were dominant factors influencing the levels of heavy metals in indoor dust. Principal component analysis showed that outdoor dust and wall paint were main factors for the high concentrations of Cd, Pb, and Cr, accounting for 40.6% of the total contribution; traffic sources contributed to the high levels of Cu and Zn explained 20.6% of the total variance. The hazard indexes of selected heavy metals were less than 1 and carcinogenic risk value of Cr were between 1.01 × 10–6 and 1 × 10–4, indicating minor noncarcinogenic and carcinogenic risks from heavy metals in indoor dust for residents in China. Pb contributed 72.0% and 86.9% to the sum of noncarcinogenic risk values of selected heavy metals for adults and children, respectively. The carcinogenic risk value of Cr was approximately 13-fold higher than that of Cd for both adults and children. Children endured higher risks from heavy metals in indoor dust compared with adults.

Journal ArticleDOI
TL;DR: In this paper, the characteristic levels, spatial patterns, sources, and risk of n-alkanes (AHs) and polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from the Escravos River Basin (ERB), Nigeria were quantified by chromatographic methods.
Abstract: This study provides data on the characteristic levels, spatial patterns, sources, and risk of n-alkanes (AHs) [octane, n-C8, to tetracontane, n-C40] and polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from the Escravos River Basin (ERB), Nigeria. The n-alkane and PAH concentrations in sediments were quantified by chromatographic methods. The concentrations of AHs and PAHs in the ERB sediments varied from 95 to 3430 µg g−1 and from 0.75 to 213 µg g−1, respectively. Both the concentrations of AHs and PAHs in ERB sediments exceeded their respective guideline values. The carbon preference index and other AH markers provide evidence that the AHs in the ERB sediments originated from petroleum sources. Ecological risk assessment indicated that the ecological risk relating to an organism’s contact with PAHs in the ERB sediments was high. The possible carcinogenic risk arising from human exposure with PAHs in surface sediments through accidental oral ingestion and skin contact exceeded the safe level of 10–6, indicating a considerable probable cancer risk for fishermen and other inhabitants of the ERB. PAH isomer ratios and multivariate statistics suggested that the PAHs in sediments from the ERB originated from gas flaring inputs, discharges from oil drilling platforms, diesel engines, ships, and speed boats, and combustion of wood and other biomass.