scispace - formally typeset
Search or ask a question

Showing papers in "Bioinspiration & Biomimetics in 2019"


Journal ArticleDOI
TL;DR: The application of fluid approximations, in the form of mean-field models, to the design of control strategies in swarm robotics is surveyed, enabling new insights and provable guarantees on the dynamics of collective behaviors.
Abstract: We present a survey on the application of fluid approximations, in the form of mean-field models, to the design of control strategies in swarm robotics. Mean-field models that consist of ordinary differential equations, partial differential equations, and difference equations have been used in the swarm robotics literature, depending on whether the state of each agent and the time variable take values from a discrete or continuous set. These macroscopic models are independent of the number of agents in the swarm, and hence can be used to synthesize robot control strategies in a scalable manner, in contrast to individual-based microscopic models of swarms that represent finite numbers of discrete agents. Moreover, mean-field models are amenable to rigorous investigation using tools from dynamical systems theory, control theory, stochastic processes, and analysis of partial differential equations, enabling new insights and provable guarantees on the dynamics of collective behaviors. In this paper, we survey the applications of these models to problems in swarm robotics that include coverage, task allocation, self-assembly, consensus, and environmental mapping.

75 citations


Journal ArticleDOI
TL;DR: The paper presents the applications of the artificial compound eye imaging system including imaging with a large FOV, imaging with high resolution, object distance detection, medical imaging, egomotion estimation, and navigation.
Abstract: The natural compound eye has received much attention in recent years due to its remarkable properties, such as its large field of view (FOV), compact structure, and high sensitivity to moving objects. Many studies have been devoted to mimicking the imaging system of the natural compound eye. The paper gives a review of state-of-the-art artificial compound eye imaging systems. Firstly, we introduce the imaging principle of three types of natural compound eye. Then, we divide current artificial compound eye imaging systems into four categories according to the difference of structural composition. Readers can easily grasp methods to build an artificial compound eye imaging system from the perspective of structural composition. Moreover, we compare the imaging performance of state-of-the-art artificial compound eye imaging systems, which provides a reference for readers to design system parameters of an artificial compound eye imaging system. Next, we present the applications of the artificial compound eye imaging system including imaging with a large FOV, imaging with high resolution, object distance detection, medical imaging, egomotion estimation, and navigation. Finally, an outlook of the artificial compound eye imaging system is highlighted.

67 citations


Journal ArticleDOI
TL;DR: This work designed an artificial suction disc and evaluated its adhesive stress on rough surfaces and non-planar geometries and correlated the effect of key bioinspired features to adhesion performance using contact visualization techniques and Finite Element Analysis.
Abstract: Adhesion is difficult to achieve on rough surfaces both in air and underwater. In nature, the northern clingfish (Gobiesox maeandricus) has evolved the impressive ability to adhere onto substrates of various shapes and roughnesses, while subject to strong intertidal surges. The suction disc of the clingfish relies on suction and friction to achieve and maintain adhesion. Inspired by this mechanism of attachment, we designed an artificial suction disc and evaluated its adhesive stress on rough surfaces and non-planar geometries. The artificial suction disc achieved adhesion strengths of 10.1±0.3 kPa in air on surfaces of moderate roughness (grain size, 68 μm), and 14.3±1.5 kPa underwater on coarse surfaces (grain size, 269 μm). By comparison, a commercially available suction cup failed to exhibit any significant adhesion in both scenarios. The roughly 2 g heavy clingfish-inspired suction discs gripped concave surfaces with small radii of curvature (12.5 mm) and supported payloads up to 0.7 kg. We correlated the effect of key bioinspired features (i.e. slits, a soft outer layer, and body geometry) to adhesion performance using contact visualization techniques and Finite Element Analysis. The suction discs were then tested on a Remotely Operated Vehicle (ROV) to demonstrate their utility in the soft manipulation of fragile objects.

64 citations


Journal ArticleDOI
TL;DR: A novel particle jamming mechanism based on the differential pressure drive that can achieve the independent control of the stiffness and the bending angle is proposed, which can be adopted in applications where both high stiffness and dexterity are required.
Abstract: Compared with rigid grippers, soft grippers show fantastic adaptability and flexibility in grasping irregularly shaped and fragile objects. However, the low stiffness of the soft actuator limits the scope of applications. Particle jamming has emerged as an important method to adjust the stiffness of soft grippers. This paper proposes a novel particle jamming mechanism based on the differential pressure drive. With the differential drive particle jamming mechanism, a soft actuator is designed, which is characterized by a dual-deformable chamber structure in which one chamber is filled with particles. The simultaneous inflation of the two chambers will result in the bending behavior without significant stiffening. However, if the air chamber is pressurized with a larger pressure, the differential pressure will cause the particles inside the particle chamber to jam each other, which increases the stiffness of the actuator significantly. Thus, the differential drive particle jamming mechanism can achieve the independent control of the stiffness and the bending angle. Both theoretical and experimental studies in this area have shown that the gripper based on the differential drive particle jamming mechanism can stiffen itself effectively, and achieve the independent control of the stiffness and the bending angle, which can be adopted in applications where both high stiffness and dexterity are required.

56 citations


Journal ArticleDOI
TL;DR: It is shown that friction plays an indispensable role in the generation and control of locomotion in robots of this type and a simulation-based method for synthesizing and implementing feedback control schemes that enable the robot to generate forward and backward locomotion is introduced.
Abstract: We present the design, fabrication, modeling and feedback control of an earthworm-inspired soft robot capable of bidirectional locomotion on both horizontal and inclined flat platforms. In this approach, the locomotion patterns are controlled by actively varying the coefficients of friction between the contacting surfaces of the robot and the supporting platform, thus emulating the limbless locomotion of earthworms at a conceptual level. Earthworms are characterized by segmented body structures, known as metameres, composed of longitudinal and circular muscles which during locomotion are contracted and relaxed periodically in order to generate a peristaltic wave that propagates backwards with respect to the worm's traveling direction; simultaneously, microscopic bristle-like structures (setae) on each metamere coordinately protrude or retract to provide varying traction with the ground, thus enabling the worm to burrow or crawl. The proposed soft robot replicates the muscle functionalities and setae mechanisms of earthworms employing pneumatically-driven actuators and 3D-printed casings. Using the notion of controllable subspace, we show that friction plays an indispensable role in the generation and control of locomotion in robots of this type. Based on this analysis, we introduce a simulation-based method for synthesizing and implementing feedback control schemes that enable the robot to generate forward and backward locomotion. From the set of feasible control strategies studied in simulation, we adopt a friction-modulation-based feedback control algorithm which is implementable in real time and compatible with the hardware limitations of the robotic system. Through experiments, the robot is demonstrated to be capable of bidirectional crawling on surfaces with different textures and inclinations.

54 citations


Journal ArticleDOI
TL;DR: This review discusses highly sensitive flow-sensing mechanisms for superficial and canal neuromasts and flow field perception algorithms of the lateral line, and the perspective of the technological challenges faced while improving flow sensitivity, durability, and sensing fusion schemes.
Abstract: Fish are able to perceive the surrounding weak flow and pressure variations with their mechanosensory lateral line system, which consists of a superficial lateral line for flow velocity detection and a canal lateral line for flow pressure gradient perception. Achieving a better understanding of the flow field perception algorithms of the lateral line can contribute not only to the design of highly sensitive flow sensors, but also to the development of underwater smart skin with good hydrodynamic imaging properties. In this review, we discuss highly sensitive flow-sensing mechanisms for superficial and canal neuromasts and flow field perception algorithms. Artificial lateral line systems with different transduction mechanisms are then described with special emphasis on the recent innovations in the field of polymer-based artificial flow sensors. Finally, we discuss our perspective of the technological challenges faced while improving flow sensitivity, durability, and sensing fusion schemes.

51 citations


Journal ArticleDOI
TL;DR: Results from this paper supported that lift enhancement due to WBI is potentially a general mechanism adopted by different kinds of flapping-wing flyers, and demonstrated the potential of WBI in the design of flapped-wing micro aerial vehicle (MAV) that pursue higher performance.
Abstract: A lift enhancement mechanism due to wing-body interaction (WBI) was previously proved to be significant in the forward flight of insect flyers with wide-shape bodies, such as cicada. In order to further explore WBI and its lift enhancement effect in a flapping flight platform with different wing and body shapes, numerical investigations of WBI were performed on the forward flight of a hummingbird in this paper. A high-fidelity computational model of a hummingbird in forward flight was modeled with its geometric complexity. The wing kinematics of flapping flight were prescribed using experimental data from previous literature. An immersed-boundary-method-based incompressible Navier‒Stokes solver was used for the 3D flow simulations of the wing-body system. Analyses on aerodynamic performances and vortex dynamics of three models, including the wing-body (WB), wing-only (WO), and body-only (BO) models, were made to examine the effect of WBI. Results have shown significant overall lift enhancement (OLE) due to WBI. The total lift force of the WB model increased by 29% compared with its WO/BO counterparts. Vortex dynamics results showed formations of unique body vortex pairs on the dorsal thorax of hummingbird where low-pressure zones were created to generate more body lift. Significant interactions between body vortex and leading-edge vortex (LEV) were observed, resulting in strengthened LEVs near the wing root and enhanced wing lift generation during downstroke. Parametric studies showed strong OLEs over wide ranges of body angle and advance ratio, respectively. The contribution of OLE from the hummingbird body increased with increasing body angle, and the wing pair's contribution increased as advance ratio increased. Results from this paper supported that lift enhancement due to WBI is potentially a general mechanism adopted by different kinds of flapping-wing flyers, and demonstrated the potential of WBI in the design of flapping-wing micro aerial vehicle (MAV) that pursue higher performance.

43 citations


Journal ArticleDOI
TL;DR: A bio-inspired flapping-wing-assisted jumping robot, named Jump-flapper, which mimics jumping insects' locomotion strategy and is capable of jumping to a height of approximately 0.9 m, showing about 30% improvement in the jumping height compared to that of the robot without assistance of the flaps.
Abstract: Jumping insects such as fleas, froghoppers, grasshoppers, and locusts take off from the ground using a catapult mechanism to push their legs against the surface of the ground while using their pairs of flapping wings to propel them into the air. Such combination of jumping and flapping is expected as an efficient way to overcome unspecified terrain or avoid large obstacles. In this work, we present the conceptual design and verification of a bio-inspired flapping-wing-assisted jumping robot, named Jump-flapper, which mimics jumping insects' locomotion strategy. The robot, which is powered by only one miniature DC motor to implement the functions of jumping and flapping, is an integration of an inverted slider-crank mechanism for the structure of the legs, a dog-clutch mechanism for the winching system, and a rack-pinion mechanism for the flapping-wing system. A prototype of the robot is fabricated and experimentally tested to evaluate the integration and performance of the Jump-flapper. This 23 g robot with assisted flapping wings operating at approximately 19 Hz is capable of jumping to a height of approximately 0.9 m, showing about 30% improvement in the jumping height compared to that of the robot without assistance of the flapping wings. The benefits of the flapping-wing-assisted jumping system are also discussed throughout the study.

36 citations


Journal ArticleDOI
TL;DR: A new type of pneumatically-driven soft robot that can travel inside pipes by mimicking the motions and replicating the functionalities of a single metamere is proposed and a sensing scheme for feedback control that mimics the mechanical sensory capabilities of an earthworm's skin is introduced.
Abstract: The bodies of earthworms are composed of repeating deformable structural units, called metameres, that generate the peristaltic body motions required for limbless underground burrowing and above-ground crawling. Metameres are actuated by circular and longitudinal muscles that are activated synchronously by the animals' nervous systems. A significant number of the neural-motor feedback loops function with sensory input gathered by the animals' highly sensitive skins, which are embedded with light, pressure and chemical receptors. In this paper, adopting the basic mechanisms employed by earthworms, we propose a new type of pneumatically-driven soft robot that can travel inside pipes by mimicking the motions and replicating the functionalities of a single metamere. Furthermore, we introduce a sensing scheme for feedback control that mimics the mechanical sensory capabilities of an earthworm's skin, which was developed upon stretchable liquid circuits capable of measuring strain and detecting pressure variations. The suitability of the proposed approach is demonstrated through several controlled locomotion experiments, employing two different robotic prototypes.

35 citations


Journal ArticleDOI
TL;DR: The model predicts experimental trends that rigid body models cannot and suggests compliance should not be neglected when considering flight dynamics at this scale, and highlights the importance offlexibility in �87apping wing micro aerial vehicle design and suggest tuned fiexibility can greatly improve vehicle efficiency.
Abstract: Flapping insect wings deform under aerodynamic as well as inertial-elastic forces. This deformation is thought to improve power economy and reduce the energetic costs of flight. However, conventional flapping wing models employ rigid body simplifications or demand excessive computational power, and are consequently unable to identify the influence of flexibility on flight energetics. Here, we derive a reduced-order model capable of estimating the driving torques and corresponding power of flapping, flexible insect wings. We validate this model by actuating a tobacco hornworm hawkmoth Manduca sexta (L.) forewing with a custom single-degree-of-freedom mechanical flapper. Our model predicts measured torques and instantaneous power with reasonable accuracy. Moreover, the flexible wing model predicts experimental trends that rigid body models cannot, which suggests compliance should not be neglected when considering flight dynamics at this scale. Next, we use our model to investigate flight energetics with realistic flapping kinematics. We find that when the natural frequency of the wing is roughly three times that of the flapping frequency, flexibility can reduce energy expenditures by almost 25% compared to a rigid wing if negative work is stored as potential energy and subsequently released to do positive work. The wing itself can store about 30% of the 1200 µJ of total energy required over a wingbeat. Peak potential energy storage occurs immediately before stroke reversal. We estimate that for a moth weighing 1.5 - 2.5 grams, the peak instantaneous power required for flight is 75 - 125 W/kg. However, these peak values are likely lower in natural insect flight, where the wing is able to exchange strain energy with the compliant thorax. Our findings highlight the importance of flexibility in flapping wing micro aerial vehicle design and suggest tuned flexibility can greatly improve vehicle efficiency.

29 citations


Journal ArticleDOI
TL;DR: In this paper, variable stiffness range is derived due to the good fluidity and rigidity of the spherical particles and the low elasticity and high toughness of the fibres, and the adaptive conditions of the soft continuum robot with variable stiffness are deduced.
Abstract: Inspired by the physiological structure of the hand capable of realizing the continuous change in finger stiffness when grasping objects of different masses, a self-locking soft continuum robot with a large variable-stiffness range based on particle jamming and fibre jamming is proposed in this paper to meet the requirements of it in practical application. In this paper, a variable stiffness range is derived due to the good fluidity and rigidity of the spherical particles and the low elasticity and high toughness of the fibres. Then, an analysis model is established to deduce its self-locking condition, and the deflection angle of self-locking under the influence of external force is about 0.17 rad. The maximum stiffness of the experimental prototype can reach 1223.58 N m-1 due to the limitation of the experimental materials, despite the fact that the theoretical stiffness can be increased infinitely after self-locking. To explain the adaptability of the robot, the adaptive conditions of the soft continuum robot with variable stiffness are deduced. A new evaluation index, the adaptive intensity of the soft continuum robot, is introduced and the adaptability experiments are carried out. In adaptability experiments, the maximum bending angle of the continuum robot reaches 108°. Finally, the adaptability of the soft continuum robot to different geometries is discussed.

Journal ArticleDOI
TL;DR: The effects of varying the ratio of membrane area to total wing area on aerodynamic forces and flow structures generated during clap and fling at Re on the order of 10.0% are examined, relevant to flight of fruit flies.
Abstract: The smallest flying insects with body lengths under 2 mm show a marked preference for wings consisting of a thin membrane with long bristles, and the use of clap and fling kinematics to augment lift at Reynolds numbers (Re) of approximately 10. Bristled wings have been shown to reduce drag forces in clap and fling, but the aerodynamic roles of several bristled wing geometric variables remain unclear. This study examines the effects of varying the ratio of membrane area (A M) to total wing area (A T) on aerodynamic forces and flow structures generated during clap and fling at Re on the order of 10. We also examine the aerodynamic consequences of scaling bristled wings to Re = 120, relevant to flight of fruit flies. We analyzed published forewing images of 25 species of thrips (Thysanoptera) and found that A M/A T ranged from 14% to 27%, as compared to 11% to 88% previously reported for smaller-sized fairyflies (Hymenoptera). These data were used to develop physical bristled wing models with A M/A T ranging from 15% to 100%, which were tested in a dynamically scaled robotic clap and fling model. At all Re, bristled wings produced slightly lower lift coefficients (C L) when compared to solid wings, but provided significant drag reduction. At Re = 10, largest values of peak lift over peak drag ratios were generated by wing models with A M/A T similar to thrips forewings (15% to 30%). Circulation of the leading edge vortex and trailing edge vortex decreased with decreasing A M/A T during clap and fling at Re = 10. Decreased chordwise circulation near the wing tip, vortex shedding, and interaction between flow structures from clap with those from fling resulted in lowering C L generated via clap and fling at Re = 120 as compared to Re = 10. Clap and fling becomes less beneficial at Re = 120, regardless of the drag reduction provided by bristled wings.

Journal ArticleDOI
TL;DR: In this article, the authors used a bioinspired remora disc to investigate the performance of increased lamellar number on shear adhesion and found that an increase in the number resulted in an increased shear adhesive performance, supporting the phylogenetic trend observed in extant remoras.
Abstract: Remoras are a family of fishes that can attach to other swimming organisms via an adhesive disc evolved from dorsal fin elements. However, the factors driving the evolution of remora disc morphology are poorly understood. It is not possible to link selective pressure for attachment to a specific host surface because all known hosts evolved before remoras themselves. Fortunately, the fundamental physics of suction and friction are mechanically conserved. Therefore, a morphologically relevant bioinspired model can be used to examine performance of hypothetical evolutionary intermediates. Using a bioinspired remora disc, we experimentally investigated the performance of increased lamellar number on shear adhesion. Herein, we translated fundamental biological principles into engineering design rules and show that a passive model system can autonomously achieve adhesive forces measured in live remoras in any environment. Our experimental results show that an increase in lamellar number resulted in an increase in shear adhesive performance, supporting the phylogenetic trend observed in extant remoras. The greatest pull-off forces measured for our model were on surface roughness on the order of shark skin and exceeded those measured for live remoras attached to shark skin by almost 60%. Overall, relative to fossil remoras and their closest ancestor, extant remoras exhibit a morphology indicative of selection for enhanced shear adhesive performance.

Journal ArticleDOI
TL;DR: This work investigates the flow characteristics and acoustic scattering mechanisms of novel owl-based aerofoils with different trailing-edge serrations and indicates that the sawtooth and sinusoidal serrations provide the most significant noise reduction effects.
Abstract: Noise reduction is an important development direction for aircrafts and wind turbines. Owl wings have three unique morphological characteristics (leading-edge serrations, trailing-edge serrations and velvet-like surfaces) that effectively suppress aerodynamic noise in low Reynolds numbers. Among them, trailing-edge serrations are widely considered the most effective noise-reduction method. Although different serrations have been studied, the quantitative relationship and influence mechanism between the serration shape, wavelength and amplitude are poorly understood. The acoustic characteristics of asymmetrical aerofoils with different trailing-edge serrations have not been fully studied. This work investigates the flow characteristics and acoustic scattering mechanisms of novel owl-based aerofoils with different trailing-edge serrations. A sensitivity analysis is utilized to quantitatively investigate the influence and interaction mechanisms of the shape, wavelength and amplitude in trailing-edge noise reduction. Numerical simulations of the transient flow over the aerofoil are performed via the large eddy simulation method, and the acoustic far-field is obtained by solving the Ffowcs Williams and Hawkings equation. The results indicate that the sawtooth and sinusoidal serrations provide the most significant noise reduction effects; the maximum noise reduction is 8.74 dB. The wavelength and amplitude play similar roles, but the amplitude has relatively greater influence. For the sawtooth and sinusoidal serrations, the large-scale vortex structures are broken into many small-scale spiral vortex structures due to the presence of the sharp serration tip. The serrations can effectively reduce the coherence of the turbulent fluctuations due to spanwise variations in the edge and may be the main reason for noise suppression. The original owl-based aerofoil generates more low-frequency noise and less high-frequency noise than aerofoils with trailing-edge serrations. The peak noise frequencies of all aerofoils are approximately 400 Hz; hence, low-frequency noise is a dominant influence in noise generation. Furthermore, the acoustic sources generated by transient pressure fluctuations are mainly located on the serration root.

Journal ArticleDOI
TL;DR: Results indicate that Brazil nutshell has great potential as a source for bioinspiration and motivates further studies on bioinspired impact and puncture resistant materials.
Abstract: Aiming to produce bioinspired impact and puncture resistant materials, the mesocarp of the Brazil nut (Bertholletia excelsa) was characterized. The mesocarp composition was investigated by chemical extraction and its microstructure was analyzed by optical microscopy and microtomography (microCT). A compression test evaluated the force needed to open the mesocarp shell. Shore D hardness testing and nanoindentation measured the local mechanical properties at different length scales. Brazil nut mesocarp has a higher content of lignin (56%) than other nutshells and is mainly composed of sclereids and fibers cells arranged together and not in separated layers as usually found in nature. The mesocarp has an internal and external layer with fibers oriented from peduncle to opercular opening and a middle layer where entangled fibers are latitudinally oriented. To open a Brazil nut mesocarp, compression forces of 10 079 ± 1460 N (parallel to latitudinal section) and 14 785 ± 4050 N (perpendicular to latitudinal section) are needed. Such forces are higher than the forces needed to open most nutshells, if fracture force is normalized by shell thickness. The Shore D hardness test showed that hardness is uniform in the mesocarp, although it is higher in the center of the thickness than close to the inner or outer surface. The cell wall of fibers has a higher reduced modulus than the cell wall of sclereids although they have a similar hardness. These microstructural and mechanical results indicate that Brazil nutshell has great potential as a source for bioinspiration and motivates further studies.

Journal ArticleDOI
TL;DR: Experimental results showed that the proposed C-CALL device achieved a pressure gradient detection limit of 0.64 Pa/m, which indicates that the constriction in canal nearby the sensing element could enhance the hydrodynamic pressure sensing performance of the CALL device.
Abstract: With the assistance of mechanosensory lateral line system, fish can perceive minute water motions in complex underwater environments. Inspired by the constriction within canal nearby canal neuromast in fish lateral line system, we proposed a novel canal artificial lateral line (CALL) device with constriction in canal nearby the sensing element. The designed CALL device consisted of a poly(vinylidene fluoride-trifluoroethylene)/polyimide cantilever as the sensing element and a polydimethylsiloxane (PDMS) microfluid canal. Two types of CALL devices, i.e., CALL with straight canal (S-CALL) and CALL with constriction canal (C-CALL), were developed and characterized employing a dipole source. Experimental results showed that the proposed C-CALL device achieved a pressure gradient detection limit of 0.64 Pa m-1, which was much lower than the S-CALL device. It indicates that the constriction in the canal nearby the sensing element could enhance the hydrodynamic pressure sensing performance of the CALL device. In addition, the constriction could modify the frequency response of the CALL device, and the C-CALL device achieved higher voltage output than S-CALL in high-frequency domain.

Journal ArticleDOI
TL;DR: Wind tunnel results show that, similar to the biological alula, the leading-edge alula-inspired device (LEAD) increases the wing's ability to maintain higher pressure gradients by modifying the near-wall flow and accelerates the flow over the wing and reduces the wake velocity deficit, indicating attenuated flow separation.
Abstract: Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge device inspired by one of these specialized groups of feathers known as the alula. Wind tunnel results show that, similar to the biological alula, the leading-edge alula-inspired device (LEAD) increases the wing's ability to maintain higher pressure gradients by modifying the near-wall flow. It also generates tip vortices that modify the turbulence on the upper-surface of the wing, delaying flow separation. The effect of the LEAD location and morphology on lift production and wake velocity profile are investigated using force and hot-wire anemometer measurements, respectively. Results show lift improvements up to 32% and 37% under post and deep stall conditions, respectively. Despite the observed drag penalties of up to 39%, the aerodynamic efficiency, defined as the lift-to-drag ratio, is maintained and sometimes improved with the addition of the LEAD to a wing. This is to be expected as the LEAD is a post-stall device, suitable for high angles of attack maneuvers, where maintaining lift production is more critical than drag reduction. The LEAD also accelerates the flow over the wing and reduces the wake velocity deficit, indicating attenuated flow separation. This work presents a detailed experimental investigation of an engineered three dimensional leading-edge device that combines the functionality of traditional two dimensional slats and vortex generators. Such a device can be used to not only extend the flight envelope of unmanned aerial vehicles (UAVs), but to also study the role and function of the biological alula.

Journal ArticleDOI
TL;DR: A numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins is presented, finding that the cupping distribution requires the least power expenditure and performs the best in terms of thrust generation and efficiency.
Abstract: In this paper, we present a numerical model capable of solving the fluid-structure interaction problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid dynamics is simulated by solving the Navier-Stokes equations using a finite-volume method based on an overset, multi-block structured grid system. The bony rays embedded in the fin are modeled as nonlinear Euler-Bernoulli beams. To demonstrate the capability of this model, we numerically investigate the effect of various ray stiffness distributions on the deformation and propulsion performance of a 3D caudal fin. Our numerical results show that with specific ray stiffness distributions, certain caudal fin deformation patterns observed in real fish (e.g. the cupping deformation) can be reproduced through passive structural deformations. Among the four different stiffness distributions (uniform, cupping, W-shape and heterocercal) considered here, we find that the cupping distribution requires the least power expenditure. The uniform distribution, on the other hand, performs the best in terms of thrust generation and efficiency. The uniform stiffness distribution, per se, also leads to 'cupping' deformation patterns with relatively smaller phase differences between various rays. The present model paves the way for future work on dynamics of skeleton-reinforced membranes.

Journal ArticleDOI
TL;DR: This paper presents a systematic experimental investigation on a passive flow control of a NACA0012 airfoil using real feather flap which is installed on the suction or pressure surface to understand the origin of the aerodynamic benefits introduced by the feather flap.
Abstract: This paper presents a systematic experimental investigation on a passive flow control of a NACA0012 airfoil using real feather flap which is installed on the pressure surface. The focus of the present study is to determine the major role of a real feather flap in the aerodynamic performance of a NACA0012 airfoil at small attack angles (α). The feather flap width w and its installation position xin are varied from 0.27c to 0.8c and from 0.0 to 0.2c, respectively, where xin is measured from the leading edge of the airfoil, and c is the chord length of the airfoil. Detailed Particle Image Velocimetry (PIV) measurements are conducted to understand the origin of the aerodynamic benefits introduced by the feather flap. When mounted on the pressure side, the feather flap is proved to be beneficial to improve the aerodynamic performance of the airfoil at small α (= −4° to 8°). The lift CL and lift-to-drag ratio CL/CD are enhanced by 186% and 72%, respectively, for w = 0.53c, xin = 0.2c at α = 2°. Time-averaged vorticity and streamwise velocity around the flapped airfoil weaken and decrease, respectively, compared with those around the plain airfoil, which are attributed to the increased CL and CL/CD.

Journal ArticleDOI
TL;DR: 3D printed diving bird models are used to show that surface diving birds have high non-dimensional jerk, which exceed a safe limit estimated from human impact analysis, whereas those by plunge divers do not.
Abstract: Some seabirds (such as northern gannets and brown boobies) can dive from heights as high as 30 m reaching speeds of up to 24 m s-1 as they impact the water surface. The physical geometry of plunge diving birds, particularly of the beak, allows them to limit high impact forces compared to non-diving birds. Numerically simulated data for one species (northern gannet) provides some insight into the impact forces experienced during diving, however, no reliable experimental data with real bird geometries exist for comparison purposes. This study utilizes eleven 3D printed diving bird models of three types of birds: plunge-diving (five), surface-diving (five) and dipper (one), with embedded accelerometers to measure water-entry impact accelerations for impact velocities ranging between 4.4-23.2 m s-1. Impact forces for all bird types are found to be comparable under similar impact conditions and well within the safe zone characterized by neck strength as found in recent studies. However, the time that each bird requires to reach maximum impact acceleration from impact is different based on its beak and head shape and so is its effect, represented here by its derivative (i.e. jerk). We show that surface diving birds have high non-dimensional jerk, which exceed a safe limit estimated from human impact analysis, whereas those by plunge divers do not.

Journal ArticleDOI
TL;DR: The analysis shows that the high wing aspect-ratio, high wing beat frequency, and small stroke amplitude adopted by mosquitoes enable efficient generation of high-intensity wing-tones for acoustic communications.
Abstract: The generation of sound from flapping (i.e. wing tones) of mosquito (Culex) wings is investigated using computational modeling. The flow field around the wing is simulated by solving the incompressible Navier-Stokes equations using a sharp-interface immersed boundary method, and the aeroacoustic sound is predicted by the Ffowcs Williams and Hawkings equation using data from the aerodynamic simulations. In addition to the aerodynamics, the characteristics of mosquito's wing tone, spectral directivity patterns, and generation mechanisms are investigated. The effects of wing-beat frequency and stroke amplitude are also studied, and scaling analysis for the mean lift, mechanical power, and overall wing tone sound power are performed to understand the effects of the wing shape and kinematics parameters. The analysis shows that the high wing aspect-ratio, high wing beat frequency, and small stroke amplitude adopted by mosquitoes enable efficient generation of high-intensity wing-tones for acoustic communications. The present findings may also apply to the optimized noise control in the flapping-wing micro air vehicles (FWMAV).

Journal ArticleDOI
TL;DR: A number of descriptions of soft robots arising from a literature review are scrutinized with the intention of determining a coherent meaning for soft and a classification of existing soft robots is presented to initiate the development of a soft robotic ontology.
Abstract: The advent of soft robotics represents a profound change in the forms robots will take in the future. However, this revolutionary change has already yielded such a diverse collection of robots that attempts at defining this group do not reflect many existing 'soft' robots. This paper aims to address this issue by scrutinising a number of descriptions of soft robots arising from a literature review with the intention of determining a coherent meaning for soft. We also present a classification of existing soft robots to initiate the development of a soft robotic ontology. Finally, discrepancies in prescribed ranges of Young's modulus, a frequently used criterion for the selection of soft materials, are explained and discussed. A detailed visual comparison of these ranges and supporting data is also presented.

Journal ArticleDOI
TL;DR: This review examines how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear.
Abstract: Biomacromolecules play a key role in protecting human biointerfaces from friction and wear, and thus enable painless motion. Biomacromolecules give rise to remarkable tribological properties that researchers have been eager to emulate. In this review, we examine how molecules such as mucins, lubricin, hyaluronic acid and other components of biotribological interfaces provide a unique set of rheological and surface properties that leads to low friction and wear. We then highlight how researchers have used some of the features of biotribological contacts to create biomimetic systems. While the brush architecture of the glycosylated molecules present at biotribological interfaces has inspired some promising polymer brush systems, it is the recent advance in the understanding of synergistic interaction between biomacromolecules that is showing the most potential in producing surfaces with a high lubricating ability. Research currently suggests that no single biomacromolecule or artificial polymer successfully reproduces the tribological properties of biological contacts. However, by combining molecules, one can enhance their anchoring and lubricating capacity, thus enabling the design of surfaces for use in biomedical applications requiring low friction and wear.

Journal ArticleDOI
TL;DR: The clap-and-fling effect, first observed in a number of insects, serves as a lift-enhancing mechanism for bio-inspired flapping wing micro aerial vehicles (MAV) and is experimentally quantified using force measurement and particle image velocimetry.
Abstract: The clap-and-fling effect, first observed in a number of insects, serves as a lift-enhancing mechanism for bio-inspired flapping wing micro aerial vehicles (MAV). In our comprehensive literature survey, we observe that the effect manifests differently in insects and contemporary MAVs; insects have active control over the angle of attack and stroke plane of the wing, whereas a number of kinematic parameters of an MAV's flexible wings are determined passively. Although there is consensus that flinging motion significantly enhances aerodynamic lift, the effect of clapping motion is not well-studied. To address this gap, we experimentally quantify the contribution of clapping motion using force measurement and particle image velocimetry. No significant enhancement in lift was observed due to clapping motion, because the momentum jet was too weak. However, the kinematics and flow conditions in our study were notably different from those in the previous studies on insect models. The wings of the MAV are flexible, and deform passively. Hence, the clapping of the trailing edges, and the appearance of a trailing edge momentum jet, was delayed and significantly suppressed. Using force measurement and CFD simulations, it was also found that the lesser the distance between the leading edges of the wings at the end of clap, the higher is the lift due to the subsequent fling.

Journal ArticleDOI
TL;DR: A minimal dynamic model is proposed that is not only validated with experimental data, but also able to predict the consequences of various important design changes, and suitable even for the initial control design phase of a tailless flapping wing robot.
Abstract: Recently, several insect- and hummingbird-inspired tailless flapping wing robots have been introduced. However, their flight dynamics, which are likely to be similar to that of their biological counterparts, remain yet to be fully understood. We propose a minimal dynamic model that is not only validated with experimental data, but also able to predict the consequences of various important design changes. Specifically, the model captures the flapping-cycle-averaged longitudinal dynamics, considering the main aerodynamic effects. We validated the model with flight data captured with a tailless flapping wing robot, the DelFly Nimble, for air speeds from near-hover flight up to 3.5 m s-1. Moreover, the model succeeds in predicting the effects of changes to the center of mass location, and to the control system gains. Hence, the model is suitable even for the initial control design phase. To demonstrate this, we have used the simulation model to tune the robot's control system for higher speeds. Using the new control parameters on the real robot improved its maximal stable speed from 4 m s-1 to 7 m s-1.

Journal ArticleDOI
TL;DR: A 2D-sensitive Artificial lateral line comprising eight all-optical flow sensors is presented, which is used to measure hydrodynamic velocity profiles along the sensor array in response to a moving object in its vicinity, and recurrent connections can be beneficial for hydrod dynamic object localisation.
Abstract: The lateral line is a mechanosensory organ found in fish and amphibians that allows them to sense and act on their near-field hydrodynamic environment. We present a 2D-sensitive artificial lateral line (ALL) comprising eight all-optical flow sensors, which we use to measure hydrodynamic velocity profiles along the sensor array in response to a moving object in its vicinity. We then use the measured velocity profiles to reconstruct the object's location, via two types of neural networks: feed-forward and recurrent. Several implementations of feed-forward neural networks for ALL source localisation exist, while recurrent neural networks may be more appropriate for this task. The performance of a recurrent neural network (the long short-term memory, LSTM) is compared to that of a feed-forward neural network (the online-sequential extreme learning machine, OS-ELM) via localizing a 6 cm sphere moving at 13 cm s-1. Results show that, in a 62 cm [Formula: see text] 9.5 cm area of interest, the LSTM outperforms the OS-ELM with an average localisation error of 0.72 cm compared to 4.27 cm, respectively. Furthermore, the recurrent network is relatively less affected by noise, indicating that recurrent connections can be beneficial for hydrodynamic object localisation.

Journal ArticleDOI
TL;DR: This work proposes a high-accuracy controller which can control a sub-carangiform robotic fish from one arbitrary position/pose (position and direction) to another and develops a hydrodynamic-model-based simulation platform to expedite the process of the parameter tuning of the controller.
Abstract: Moving in groups is an amazing spectacle of collective behaviour in fish and has attracted considerable interest from many fields, including biology, physics and engineering. Although robotic fish have been well studied, including algorithms to simulate group swimming, experiments that demonstrate multiple robotic fish as a stable group are yet to be achieved. One of the challenges is the lack of a robust bottom-level motion control system for robotic fish platforms. Here we seek to overcome this challenge by focusing on the design and implementation of a motion controller for robotic fish that allows multiple individuals to swim in groups. As direction control is essential in motion control, we first propose a high-accuracy controller which can control a sub-carangiform robotic fish from one arbitrary position/pose (position and direction) to another. We then develop a hydrodynamic-model-based simulation platform to expedite the process of the parameter tuning of the controller. The accuracy of the simulation platform was assessed by comparing the results from experiments on a robotic fish using speeding and turning tests. Subsequently, extensive simulations and experiments with robotic fish were used to verify the accuracy and robustness of the bottom-level motion control. Finally, we demonstrate the efficacy of our controller by implementing group swimming using three robotic fish swimming freely in prescribed trajectories. Although the fluid environment can be complex during group swimming, our bottom-level motion control remained nominally accurate and robust. This motion control strategy lays a solid foundation for further studies of group swimming with multiple robotic fish.

Journal ArticleDOI
TL;DR: A kinematic analysis and a hydrodynamic model of dog paddling motion in a robotic system are presented for the first time and it is believed that these findings will provide useful guidance in future development of amphibious robotic dogs.
Abstract: Research on quadrupedal robots inspired by canids or felids have been widely reported and demonstrated. However, none of these legged robots can deal with difficult environments that include water, such as small lakes, streams, rain, mud, flooded terrain, etc. In this paper, we present for the first time a kinematic analysis and a hydrodynamic model of dog paddling motion in a robotic system. The quadrupedal paddling gait of dogs was first analyzed based on underwater video recording. Hydrodynamic drag force analysis in a paddling gait cycle was conducted for a prototype robotic dog. The prototype robotic dog was developed using four pre-charged pneumatics soft actuators with consideration of relative positions of CG (center of gravity) and CB (center of buoyancy) and their dynamic variation in paddling. It was found that such soft actuators have great potential in developing amphibious legged robots, because they are inherently water-tight, anti-rusty, simple in structural design, and have large hydrodynamic advantage due to their mostly hemi-cylindrical shape design. Trotting and paddling of the prototype robotic dog was also demonstrated. It is believed that our findings reported in this research will provide useful guidance in future development of amphibious robotic dogs.

Journal ArticleDOI
TL;DR: Key modeling and control aspects of a flapping wing MAV in hover have been discussed and a method is presented wherein the controller is designed for the simplest model and tested for its robustness on the more complex models.
Abstract: Research in robots that emulate insect flight or micro aerial vehicles (MAV) has gained significant momentum in the past decade owing to the vast number of fields they could be employed in. In this paper, key modeling and control aspects of a flapping wing MAV in hover have been discussed. Models of varying complexity have been developed by previous researchers. Here, we examine the validity of key assumptions involved in some of these models in a closed-loop control setting. Every model has limitations and with proper design of feedback control these limitations can be overcome up to a certain degree. Three nonlinear models with increasing complexity have been developed. Model I includes only the rigid body dynamics while ignoring the wing dynamics while model II includes the rigid body dynamics along with the wing kinematics. Lastly, model III encompasses the complete rigid body and the rigid wing dynamics. To ensure these higher fidelity models can be rendered unnecessary with a suitably designed controller, a method is presented wherein the controller is designed for the simplest model and tested for its robustness on the more complex models. Linear quadratic regulator (LQR) is used as the main control system design methodology. A nonlinear parameter optimization algorithm is employed to design a family of LQR control systems for the MAV. Additionally, critical performance trade-offs are illuminated, and properties at both the plant output and input are examined. Lastly, we also provide specific rules of thumb for the control system design.

Journal ArticleDOI
TL;DR: A dynamic model based on the principle of virtual power of an inchworm is established to examine the effects of nonlinear properties including variable stiffness and damping properties of muscles on these dynamic behaviors of inchworms and some inspiration for designing bio-inspired crawling robots and soft slender robotic devices is obtained.
Abstract: Inchworms have been one of the most widely used bionic templates for designing soft robotic devices. Bioresearch has shown that muscles of inchworms exhibit nonlinear hysteresis and their body structures are with hydrostatic skeleton. But effects of these properties on their dynamic movements have not been studied yet. In this work, a dynamic model based on the principle of virtual power of an inchworm is established to examine the problem. A spring-damper model with time-varying stiffness and damping coefficients is used to model controllable nonlinear properties of the inchworm muscles. The hydrostatic skeleton is applied to the model as a constant volume constraint for each segment. Based on this, simulations of three typical movements including omega-shaped arching motion, cantilevered probing motion and surprising fast looping motion are presented. The effects of the nonlinear properties including variable stiffness and damping properties of muscles on these dynamic behaviors of inchworms are illustrated. Some inspiration for designing bio-inspired crawling robots and soft slender robotic devices is obtained. And we think this work will hopefully provide better understanding and guidance for design and control of these robotic devices.