scispace - formally typeset
Search or ask a question

Showing papers in "Biotechnology and Bioengineering in 1983"


Journal ArticleDOI
TL;DR: In order to eliminate organic pollutants in waste gases, a biological filter bed technique has been developed, with a high self‐regenerating capacity and a low pressure drop, which enables the prediction of the elimination capacity of the filter bed.
Abstract: In order to eliminate organic pollutants in waste gases, a biological filter bed technique has been developed, with a high self-regenerating capacity and a low pressure drop. The bed consists of an appropriate filling material (mainly peat compost), in order to let the microorganisms grow on the solid surface and to supply them with inorganic nutrients. Most organic compounds are oxidized to carbon dioxide and water. The compositions of the solid phase and the viable organisms present are such that aging is prevented, as a result of which a relatively high activity can be maintained during a long period of time (years). Experiments have been carried out in laboratory-scale columns with composite gas mixtures at varied concentrations and superficial gas velocities. The (macro) kinetics of the elimination processes have been studied, which enables the prediction of the elimination capacity of the filter bed.

413 citations


Journal ArticleDOI
TL;DR: In this paper, byproduct production rates and inhibition levels in continuous fermentation with Saccharomyces cerevisiae have been determined for acetaldehyde, glycerol, formic, lactic, and acetic acids, 1-propanol, 2-methyl-1-butanol, and 2,3-butanediol.
Abstract: Inhibition by secondary fermentation products may limit the ultimate productivity of new glucose to ethanol fermentation processes. New processes are under development whereby ethanol is selectively removed from the fermenting broth to eliminate ethanol inhibition effects. These processes can concentrate minor secondary products to the point where they become toxic to the yeast. Vacuum fermentation selectively concentrates nonvolatile products in the fermentation broth. Membrane fermentation systems may concentrate large molecules which are sterically blocked from membrane transport. Extractive fermentation systems, employing nonpolar solvents, may concentrate small organic acids. By-product production rates and inhibition levels in continuous fermentation with Saccharomyces cerevisiae have been determined for acetaldehyde, glycerol, formic, lactic, and acetic acids, 1-propanol, 2-methyl-1-butanol, and 2,3-butanediol to assess the potential effects of these by-products on new fermentation processes. Mechanisms are proposed for the various inhibition effects observed.

380 citations


Journal ArticleDOI
TL;DR: In this paper, a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw were evaluated, and it was found that, in general, multiple pretreatments were not promising.
Abstract: In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hyrolysis rate upon pretreatment. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ball-milling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of themore » structural features, followed by the lignin content. (Refs. 23).« less

259 citations


Journal ArticleDOI
TL;DR: A systematic method is presented which is capable of both detecting the presence of grossly biased measurement errors and locating the source of these errors in a bioreactor through statistical hypothesis testing.
Abstract: A systematic method is presented which is capable of both detecting the presence of grossly biased measurement errors and locating the source of these errors in a bioreactor through statistical hypothesis testing. Equality constraints derived from material and energy balances are employed for the detection of data inconsistencies and for the subsequent identification of the suspect measurements by a process of data analysis and rectification. Maximum likelihood techniques are applied to the estimation of the states and parameters of the bioreactor after the suspect measurements have been eliminated. The level if significance is specified by the experimenter while the measurements are assumed to be randomly, normally distributed with zero mean and known variances. Two different approaches of data analysis, batchwise and sequential, that lead to a consistent set of adjustments on the experimental values, are discussed. Several examples based on the fermentation data taken from literature sources are presented to demonstrate the utility of the proposed method, and one set of data is solved numerically to illustrate the computational aspect of the algorithm

232 citations


Journal ArticleDOI
TL;DR: Results obtained in a 120 liter 2 m high UASB‐reactor with raw domestic sewage and using a granular sugar beet waste cultivated seed sludge reveal the feasibility of this type of anaerobic treatment for domestic sewage.
Abstract: Results obtained in a 120 liter 2 m high UASB-reactor with raw domestic sewage and using a granular sugar beet waste cultivated seed sludge, reveal the feasibility of this type of anaerobic treatment for domestic sewage. Under dry weather conditions 65-85% COD reduction can be achieved at temperatures in the range of 8-20 degrees C and at hydraulic loads as high as 2 m(3) x m(-3) x day(-1). In the case of heavy rainfall the COD-reduction drops to 50-70% and occasionally, viz.at very low influent COD, even below 50%. The net methane production amounts to 7.1-7.3 m(3) x PE(-1) x year(-1), and the excess sludge production ranges form 5.0-8.6 kg TS x PE(-1) x year(-1). Regarding the results obtained anaerobic treatment of raw sewage not only looks an attractive proposition for tropic areas but also for moderate climatic areas.

192 citations


Journal ArticleDOI
TL;DR: Results on the potentiometry, polarization, and coulombic output of the cells support a mediator‐coupled mechanism for the transfer of electrons from the organism to the electrode in preference to a mechanism of “direct” electrochemical oxidation of glucose or its degradation products.
Abstract: Potentiometric and amperometric measurements were made with microbial fuel cells containing E. coli or yeast as the anodic reducing agent and glucose as the oxidizable substrate. The catalytic effects of thionine and resorufin on the anode reaction were investigated. Results on the potentiometry, polarization, and coulombic output of the cells support a mediator-coupled mechanism for the transfer of electrons from the organism to the electrode in preference to a mechanism of “direct” electrochemical oxidation of glucose or its degradation products. Experiments with 14C-labeled glucose show that when a microbial fuel cell produces a current under load, exogenous glucose is metabolized to produce 14CO2. The Coulombic yields of the cells indicate a high degree of energy conversion in these systems.

191 citations


Journal ArticleDOI
TL;DR: A new type of reactor, an attrition bioreactor, was tested to achieve a higher rate and extent of enzymatic saccharification of cellulose than is possible with conventional methods.
Abstract: A new type of reactor, an attrition bioreactor, was tested to achieve a higher rate and extent of enzymatic saccharification of cellulose than is possible with conventional methods. The reactor consisted of a jacketted stainless-steel vessel with shaft, stirrer, and milling media, which combined the effect of the mechanical action of wet milling with cellulose hydrolysis. The substrates tested were newsprint and white-pine heartwood. The performance of the reactor was excellent. The extent and rate of enzymatic hydrolysis could be markedly improved over other methods. The power consumption of the attrition bioreactor was also measured. The cellulase enzyme deactivation during attrition milling was not significant.

177 citations


Journal ArticleDOI
TL;DR: The adsorption of cellulase from Trichoderma viride (Meicelase CEP) on the surface of pure cellulose was studied and was found to obey apparently the Langmuir isotherm.
Abstract: The adsorption of cellulase from Trichoderma viride (Meicelase CEP) on the surface of pure cellulose was studied. The adsorption was found to obey apparently the Langmuir isotherm. From the data concering the effects of temperature and the crystallinity of cellulose on the Langmuir adsorption parameters, the characteristics of the adsorption of the individual cellulase components, namely CMCase (endoglucanase) and Avicelase (exoglucanase), were discussed. While beta-glucosidase also adsorbed on the surface of cellulose at 5 degrees C, it did not at 50 degrees C.

165 citations


Journal ArticleDOI
TL;DR: The ‐;xylosidase was demonstrated to play an important role in the overall conversion of heteroxylan into xylose that is analogous to the role of β‐glucosid enzyme in the saccharification of cellulose by cellulases.
Abstract: The growth of Trichoderma reesei QM9414 in shake flasks at 28 degrees C on hemicellulose substrates and bagasse resulted in rather low yields of hemicellulolytic enzymes (1.0-1.5 units/mL xylanase and 0.05-0.08 units/mL beta-xylosidase). The influence of pH on the synthesis of beta-xylosidase was greater than on the synthesis of xylanase. Both xylanase and beta-xylosidase showed optimal activity at pH 4-5 and 55-60 degrees C. Xylanase was stable at pH 2-10 but was heat labile and totally inactivated after 1 h at 65 degrees C. Enzyme stability towards heat could be increased in the presence of bovine serum albumin. The beta-xylosidase was more tolerant to heat, but stable over a pH range 2.5-6.0. The D-xylose inhibited both enzymes in a competitive manner. Hemicellulose (heteroxylan) was degraded to the extent of 30-40%within 24 h. The degree of hydrolysis decreased as the substrate concentration increased and increased with increased amounts of enzyme. Multiple enzyme doses resulted in increased saccharification in reduced times. The degree of hydrolysis was influenced by the amount of beta-xylosidase present in the hemicellulolytic enzyme preparation. The -;xylosidase was demonstrated to play an important role in the overall conversion of heteroxylan into xylose that is analogous to the role of beta-glucosidase in the saccharification of cellulose by cellulases.

158 citations


Journal ArticleDOI
TL;DR: A process for producing a higher‐fructose syrup containing more than 50% fructose was developed that involves a new system combining selective adsorption of fructose and an immobilized glucose isomerase reaction.
Abstract: A process for producing a higher-fructose syrup containing more than 50% fructose was developed that involves a new system combining selective adsorption of fructose and an immobilized glucose isomerase reaction. Continuous countercurrent contact of the liquid stream with the solid adsorbent is simulated by advancing adsorption columns against the fixed inlets and outlet of liquid streams without actual movement of the solid adsorbent, while the immobilized enzyme reactors are stationary. Two mathematical models, an intermittent moving-bed and a continuous moving-bed model, are presented for calculation the concentration profiles of glucose and fructose in the system. The validity of the models is experimentally confirmed, and a criterion for good production in the system is presented. This system requires less desorbent than a process using a fixed-bed adsorber and a simulated moving-bed process to produce the syrup with 45-65% fructose content, the level desired in food manufacture.

150 citations


Journal ArticleDOI
TL;DR: The kinetics of enzymatic hydrolysis of pure insoluble cellulose by means of unpurified culture filtrate of Trichoderma reesei was studied, and the result has shown that the action of β‐glucosidase is competitively inhibited by glucose.
Abstract: The kinetics of enzymatic hydrolysis of pure insoluble cellulose by means of unpurified culture filtrate of Trichoderma reesei was studied, emphasizing the kinetic characteristics associated with the extended hydrolysis times. The changes in the hydrolysis rate and extent of soluble protein adsorption during the progress of reaction, either apparent or intrinsic, were investigated. The hydrolysis rate declined drastically during the initial hours of hydrolysis. The factors causing the reduction in the hydrolysis rate were examined; these include the transformation of cellulose into a less digestible form and product inhibition. The structural transformation can be partially explained by changes in the crystallinity index and surface area. The product inhibition was caused by the deactivation of the adsorbed soluble protein by the products, which essentially represents the so-called "un-competitive" inhibition. The kinetics of beta-glucosidase were also studied. The result has shown that the action of beta-glucosidase is competitively inhibited by glucose. It has been found that the integrated form of the initial rate expression cannot be used in predicting the progress of reaction because the digestibility of cellulose changes drastically as the hydrolysis proceeds, and that the rate expression for enzymatic hydrolysis of cellulose cannot be simplified or approximated by resorting to the pseudo-steady-state assumption. A mechanistic kinetic model of cellulose hydrolysis should include the following major influencing factors: (1)mode of action of enzyme, (2) structure of cellulose, and (3) mode of interaction between the enzyme and cellulose molecules.

Journal ArticleDOI
TL;DR: The use of foil arrays appears to be an effective and inexpensive way to utilize the flashing light effect in a dense algal culture system.
Abstract: Arrays of foils similar in design to airplane wings have been placed in an algal culture flume to create systematic mixing. Vortices are produced in the culture due to the pressure differential created as water flows over and under the foils. In a flume having a flow rate of 30 cm/s, the foil arrays produced vortices with rotation rates of ca. 0.5-1.0 Hz. This rotation rate is satisfactory to take advantage of the flashing light effect if the culture is sufficiently dense. Solar energy conversion efficiencies in an experimental culture of P. tricornutum increased 2.2-2.4 fold with the foil arrays in place versus controls with no foil arrays and solar energy conversion efficiencies averaged 3.7% over a three-month period. Five-day running means of solar energy conversion efficiencies reached as high as 10% during the three-month period. The use of foil arrays appears to be an effective and inexpensive way to utilize the flashing light effect in a dense algal culture system Etude experimentale d'un systeme de melangeage systematique pour des cultures d'algues. Augmentation du rendement de conversion de l'energie solaire dans une culture de P. tricornutum

Journal ArticleDOI
TL;DR: Screening fifteen strains of white‐rot fungi for their ability to decolorize combined bleached kraft effluent showed that Coriolus versicolor in liquid culture removed over 60% of the color of the effluent within six days in the presence of sucrose.
Abstract: Screening fifteen strains of white-rot fungi for their ability to decolorize combined bleached kraft effluent showed that Coriolus versicolor in liquid culture removed over 60% of the color of the effluent within six days in the presence of sucrose. Treatment of the same effluent with this fungus, immobilized in beads of calcium alginate gel, resulted in 80% decolorization after three days in the presence of sucrose. Caustic extraction E(1) effluent was also decolorized by the immobilized fungus. Decolorization was achieved more rapidly at pH 5.0 than at pH 7.0. Recycled beads could remove color efficiently and repeatedly in the presence of air but not under anaerobic conditions.

Journal ArticleDOI
TL;DR: Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp.
Abstract: The utilization and conversion of D-xylose, D-xylulose, L-arabinose, and xylitol by yeast strains have been investigated with the following results: (1) The majority of yeasts tested utilize D-xylose and produce polyols, ethanol, and organic acids. The type and amount of products formed varies with the yeast strains used. The most commonly detected product is xylitol. (2)The majority of yeasts tested utilize D-xylulose aerobically and fermentatively to produce ethanol, xylitol, D-arabitol, and organic acids. The type and amount of products varies depending upon the yeast strains used. (3) Xylitol is a poor carbon and energy source for most yeasts tested. Some yeast strains produce small amounts of ethanol from xylitol. (4) Most yeast strains utilize L-arabinose, and L-arabitol is the common product. Small amounts of ethanol are also produced by some yeast strains. (5) Of the four substrates examined, D-xylulose was the perferred substrate, followed by D-xylose, L-arabinose, and xylitol. (6) Mutant yeast strains that exhibit different metabolic product patterns can be induced and isolated from Candida sp. Saccharomyces cerevisiae, and other yeasts. These mutant strains can be used for ethanol production from D-xylose as well as for the study of metabolic regulation of pentose utilization in yeasts.

Journal ArticleDOI
TL;DR: More experimental evidence for a two‐phase model, which is based on degradation of cellulose by simultaneous actions of cellulase complex on the crystalline and amorphous phases, has been obtained and the mode of cellul enzyme action and a possible reaction mechanism are proposed.
Abstract: The effects of structural properties and their changes during cellulose hydrolysis on the enzymatic hydrolysis rate have been studied from the reaction mechanism point of view. Important findings are the following: (1) The crystallinity index (CrI) of partially crystalline cellulose increases as the hydrolysis reaction proceeds, and a significant slowing down of the reaction rate during the enzymatic hydrolysis is, in large part, attributable to this structural change of cellulose substrate. (2) The crystallinity of completely disordered cellulose, like phosphoric-acid-treated cellulose, does not change significantly, and a relatively high hydrolysis rate is maintained during hydrolysis. (3) The specific surface area (SSA) of partially crystalline cellulose decreases significantly during enzymatic hydrolysis while the change in SSA of regenerated cellulose is found to be negligible. (4) The value of degree of polymerization (DP) of highly ordered crystalline cellulose remains practically constant whereas the change in DP of disordered regenerated cellulose is found to be very significant. (5) Combination of these structural effects as well as cellulase adsorption, product inhibition, and cellulase deactivation all have important influence on the rate of cellulase reaction during cellulose hydrolysis. More experimental evidence for a two-phase model, which is based on degradation of cellulose by simultaneous actions of cellulase complex on the crystalline and amorphous phases, has been obtained. Based on experimental results from this study and other results accumulated, the mode of cellulase action and a possible reaction mechanism are proposed.

Journal ArticleDOI
TL;DR: A method suitable for large‐scale isolation of β‐galactosidase from a suspension of disintegrated E. coli cells has been developed in an aqueous two‐phase system consiting of PEG 6000 and potassium phosphate.
Abstract: A method suitable for large-scale isolation of beta-galactosidase from a suspension of disintegrated E. coli cells has been developed. In an aqueous two-phase system consisting of PEG 6000 and potassium phosphate, all cell debris and the major part of the proteins and nucleic acids were partitioned to the denser salt phase. Seventy-five percent of the beta-galactosidase was recovered in the lighter PEG phase, giving a purification ratio of about 12.

Journal ArticleDOI
TL;DR: Various forms of liquid‐liquid extraction systems are being developed to separate products, such as ethanol and volatile fatty acids (VFA), from fermentation liquids, since distillation is energetically expensive.
Abstract: Various forms of liquid-liquid extraction systems are being developed to separate products, such as ethanol and volatile fatty acids (VFA), from fermentation liquids, since distillation is energetically expensive. Continuous extraction is advantageous, as product inhibition of the fermentation is minimized. However, some extraction solvents may be toxic or inhibitory to microorganisms.Thirty organic chemicals were examined by means of a small scale (60 mL) batch fermentation bioassay procedure for their toxicity to a commercial inoculum (Methanobac, W.B.E. Ltd.), which was a mixed culture of facultatively anaerobic, acid-producing bacteria. Gas production, pH change of medium, and the concentrations of ethanol, VFA, and lactic acid were measured after 75 h growth. The optimum experimental conditions for toxicity testing were alfalfa as substrate (2 g), a buffered nutrient medium (pH 6.8), "Methanobac" inoculum (10 mL), and test chemicals at levels between 10 and 100 microL/mL.Thirteen chemicals were nontoxic, and included the paraffins (C(6)-C(12)), phthalates, organophosphorus compounds, Freon 113 (1,1,2-trichloro-1,2,2-trifluoro ethane), Aliquat 336 (tricaprylylmethyl ammonium chloride), di-isoamyl ether, and trioctylamine. Other amine extractants were partially toxic. Alcohols (C(5)-C(12)), ketones (C(5)-C(8)), benzene derivatives, isoamyl acetate, and di-isopropyl ether were toxic. Generally, the chemicals were not toxic unless present at levels in excess of that expected to be required to saturate the aqueous phase.Total gas production was a good indicator of toxicity even within 24 h, but the presence of homofermentative (nongas producing) lactic acid bacteria complicated interpretation."Methanobac" inoculum was compared with an inoculum derived from a rumen culture for four test chemicals. The results were essentially the same. However, the toxicity of a chemical to bacteria is likely to vary considerably between bacterial species.

Journal ArticleDOI
TL;DR: Factors which influenced the extent of saccharification of autohydrolysis‐exploded bagasse pulps were the enzyme‐substrate ratio, the substrate concentration, and the saccharifications mode.
Abstract: Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.

Journal ArticleDOI
TL;DR: A methodology has been developed for the quantitative assessments of the individual effects of precipitation and chelation of metal ions in an anaerobic digester.
Abstract: A methodology has been developed for the quantitative assessments of the individual effects of precipitation and chelation of metal ions in an anaerobic digester.

Journal ArticleDOI
TL;DR: A computer‐aided methodology is developed for on‐line monitoring and control of cell growth in fed‐batch penicillin fermentation using a semidefined medium containing low corn steep liquor concentration.
Abstract: A computer-aided methodology is developed for on-line monitoring and control of cell growth in fed-batch penicillin fermentation using a semidefined medium containing low corn steep liquor concentration (5.7 g/L). Cell growth is monitored and controlled with the use of experimental correlation and carbon-balancing equatiions on a real-time basis throughout the fermentation. Through a combination of feed-forward and feedback control of sugar addition, residual glucose concentration in the broth was maintained below 1 g/L and cell-growth rate was kept at constant at preset vaiues. The accuracy and reproducibility of this technique are demonstrated. The use of real-time control of cell growth is expected to aid future investigations of this antibiotic fermentation.

Journal ArticleDOI
TL;DR: In order to further refine and support the uranium biosorption mechanism hypothesis proposed for Rhizopus arrhizus, uranium competitive equilibrium uptake isotherms by chitin were determined at two different solution pH levels and in the presence of different concentrations of competing ions.
Abstract: In order to further refine and support the uranium biosorption mechanism hypothesis proposed for Rhizopus arhizus, uranium competitive equilibrium uptake isotherms by chitin were determined at two different solution pH levels and in the presence of different concentrations of competiting ions, namely, Cu/sup 2 +/, Zn/sup 2 +/, and Fe/sup 2 +/. The co-ion effect became more pronounced as the co-ion concentration in solution and pH increased. Obtained equilibrium data are in agreement with uranium biosorption data reported earlier. Infrared, mass, and electron paramagnetic resonance (EPR) spectra of chitin before and after uranium uptake in the presence of the competing ions Cu/sup 2 +/, Zn/sup 2 +/, and Fe/sup 2 +/ were recorded. The combination of the spectral data and the information from equilibrium studies supported the hypothesis advanced earlier on the mechanism of uranium uptake by R. arrhizus. In addition, the data suggested the participation of a free radical in uranium coordination by the cell wall chitin. The mechanism of reduction of the uranium uptake capacity of the biomass in the presence of competing ions was also elucidated further.

Journal ArticleDOI
TL;DR: Reactor productivity was dependent on the number of cells in the reactor, suggesting that reactor performance was kinetically controlled and not mass transport limited, and hollow‐fiber bioreactor was 100 times more productive than the shaker‐flask culture on a reactor‐volume basis.
Abstract: Actively growing Escherichia coli C600(pBR322), immobilized within the macroporous matrix of asymmetric-wall hollow-fiber membranes, has been propagated to extremely high densities, typically more than 10 12 cells/mL of accessible void volume, in some regions cells accounting for nearly 100% of the available macrovoid volume forming a tissue-like mass. Production rates of β-lactamase, an enzyme used as an indicator of the culture's biosynthetic potential, remained at high and relatively stable levels for more than three weeks of continuous operation, and effluent supernatant enzyme activities attained 25% of the accumulated level measured in a 24-h shaker-flask culture. Based on the accessible void volume within the fiber wall, the β-lactamase productivity was independent of the specific asymmetric membrane used. On a per cell basis, however, cells cultured using hollow-fiber membranes were only 10% as productive as those in the shaker-flask culture, possibly due to the high packing density or culture aging. By contrast, the hollow-fiber bioreactor was 100 times more productive than the shaker-flask culture on a reactor-volume basis, primarily as a consequence of the high cell densities. Reactor productivity was dependent on the number of cells in the reactor, suggesting that reactor performance was kinetically controlled and not mass transport limited Immobilisation d'E.c. C600(pBR322) utilise comme microorganisme modele sur des membranes asymetriques de fibres creuses, et etude de la production de β-lactamase. La production de cet indicateur du potentiel biosynthetique de la culture, reste a un taux eleve et relativement stable pendant plus de 3 semaines de processus continu. Ce bioreacteur se revele 100 fois plus productif que la culture en flacon agite, du fait en particulier de la forte densite cellulaire

Journal ArticleDOI
TL;DR: A method for determining the number of plates by the moment method is presented and the dependencies of the peak position and peak width on the slope of linear gradient are predictable by numerical calculations of the present model, simpler methods for prediction of these dependencies are desirable.
Abstract: A mathematical model is proposed for the elution of proteins on ion exchange columns by a linear gradient increase and stepwise increase of ionic strength in order to predict relationships between the elution characteristics (the peak position, the peak width, etc.) and the operating conditions (the flow rate, the slope of gradient, etc). This model is in principle based on the continuous-flow plate theory, in which the protein concentration and ionic strength dependent distibution coefficient between proteins and ion exchangers and zone sperading effects are taken into consideration. The advantage of this model is its simplicity since it requires only two parameters: The distribution coefficient and the number of plates. Since the distribution coefficient of proteins depends on both the protein concentration and ionic strength of the elution buffer, the number of plates should vary with time. However, it is extremely difficult to take into consideration the time-dependent number of plates. Therefore, we assume that the number of plates is constant and related to that number derived from a mass balance model which includes longitudinal dispersion and gel phase diffusion. On the basis of these assumptions, a method for determining the number of plates by the moment method is presented. Although the dependencies of the peak position and peak width on the slope of linear gradient are predictable by numerical calculations of the present model, simpler methods for prediction of these dependencies are desirable. A graphical method is proposed for prediction of the peak position. For prediction of the peak width, an asymptotic solution is derived from a quasi-steady-state model.

Journal ArticleDOI
TL;DR: Batch fermentations showed that the ultimate CH4 yield (B0) of straw–manure mixtures was directly proportional to the relative proportion and B0 of the individual components, and hammer or ball milling did not increase the B 0 of straw.
Abstract: The effects of temperature (35 and 55 degrees C) and straw-manure mixtures (90, 75, 50 and 0% straw) on methane (CH/sub 4/) production were studied using laboratory-scale fermentors. Batch fermentations showed that the ultimate CH/sub 4/ yield (Bo) of straw-manure mixtures was directly proportional to the relative proportion and Bo of the individual components. Also, hammer or ball milling did not increase the Bo of straw. Kinetic analysis showed that fermentation stress occurred when the straw content of straw-manure mixtures was higher than 40% at 35 degrees C or higher than 75% at 55 degrees C. This fermentation stress was observed to occur when the free ammonia concentration was below 10 g/cu.m. (Refs. 17).

Journal ArticleDOI
TL;DR: Alkali treatment of corn stover improves the avaliability of cellulose and hemicellulose for enzymatic attack and saccharificatin (g sugar/g stover) of the residue and dissolved solids byenzymatic hydrolysis was achieved compared to 20% for untreatedcorn stover.
Abstract: Alkali treatment of corn stover improves the availability of cellulose and hemicellulose for enzymatic attack. Treatments were carried out for 1 to 60 min at temperatures and NaOH concentrations ranging from 100 to 150 degrees C and 0 to 2%, respectively. Solubilization of the stover and sugar production by enzymatic hydrolysis (Trichoderma viride cellulase) of the solid residue and the dissolved solids were used to measure the effect of caustic treatment. At 150 degrees C and 2% NaOH concentration, 65% of the original stover was dissolved after 5 min and 52% saccharification (g sugar/g stover) of the residue and dissolved solids by enzymatic hydrolysis was achieved compared to 20% for untreated corn stover. (6 Refs.)

Journal ArticleDOI
TL;DR: A comprehensive mechanistic kinetic model for enzymatic hydrolysis of insoluble cellulose has been synthesized by combining models for several key aspects which have been derived independent of each other.
Abstract: A comprehensive mechanistic kinetic model for enzymatic hydrolysis of insoluble cellulose has been synthesized by combining models for several key aspects which have been derived independent of each other. The model takes into account the major contributing factors: the nature of the enzyme system, the structure of cellulose, and the mode of interaction between the enzyme and cellulose molecules. It consists of a set of simultaneously occurring ordinary differential equations with ten kinetic constants. All of the kinetic constants have been determined independently by carrying out critically designed experiments, and they appear in the comprehensive model without any arbitrary manipulations. The governing equations of the model have been numerically simulated by means of the computer subroutine CSMP III. The model predicts the progress of hydrolysis of cellulose over a wide range of experimental conditions and hydrolysis times reasonably well. The model can even be applied to predict the progress of hydrolysis for intensively pretreated cellulose with a minor adjustment. The applicability of the model for the actual process development is also discussed.

Journal ArticleDOI
TL;DR: It has been demonstrated that at temperatures where a significant fraction of the enzyme molecules are in the native conformation, there is a correlation between the enzyme thermostabilities with respect to the reversible and irreversible inactivations, and the implications of the derived relationship are discussed.
Abstract: The contribution of the reversible thermal unfolding of an enzyme toward the overall irreversible thermoinactivation process has been examined both theoretically and experimentally. Using bovine pancreatic ribonuclease as a model, we have studied the effect of such variables as pH and salts both on the equilibrium constant of reversible denaturation and on the rate constant of the overall irreversible process. It has been demonstrated that at temperatures where a significant fraction of the enzyme molecules are in the native conformation, there is a correlation between the enzyme thermostabilities with respect to the reversible and irreversible inactivations: greater stability against the former is accompanied by greater stability against the latter. On the other hand, at very high temperatures (where essentially all of the enzyme molecules are unfolded), such a correlation does not exist. These findings are considered in terms of a kinetic model for irreversible enzyme thermoinactivation, and the implications of the derived relationship are discussed.

Journal ArticleDOI
TL;DR: An empirical, simple rate expression was developed which included only one parameter: a overall rate retardation constant and held for the hydrolysis of at least two kind of cellulosic materials: Avicel and tissue paper.
Abstract: Pure cellulose (Avicel) was hydrolyzed batchwise at 50 degrees C and pH 4.8 by cellulase from Trichoderma viride (Meicelase CEP). Then the effects of the crystallinity of cellulose as well as the thermal deactivation and product (cellubiose and glucose) inhibition to cellulose on the hydrolysis rate were quantitatively investigated. While these factor had evidently retarded the enzymatic hydrolysis of cellulose to a significant extent, the hydrolysis rates observed could not be explained. For practical purposes, an empirical, simple rate expression was developed which included only one parameter: a overall rate retardation constant. This empirical rate expression held for the hydrolysis of at least two kind of cellulosic materials: Avicel and tissue paper.

Journal ArticleDOI
TL;DR: It is concluded that the art of unstructured model building has already reached its maturity and that now much effort should be channelled into the development and verification of structured models.
Abstract: Microbial kinetics and energetics are discussed in connection with the formulation of unstructured growth models. The development of microbial energetics and the use of macroscopic methods in the study of microbial growth are briefly evaluated. The general approach to the modelling of microbial growth has been critically discussed and a strategy for the formulation of unstructured models is presented. A simple unstructured model based on Monod kinetics and the linear relation for substrate consumption is evaluated with reference to extensive experimental and simulation data obtained in batch, fed-batch, and continuous cultivation modes. Choice for a kinetic expression is discussed and has been shown not to be critical in most situations. It is shown that during growth in batch mode, the behavior of the system is rigidly fixed by the kinetic parameter: the maximum specific growth rate. The energetic parameters have minimal influence. In continuous cultivation the behavior is fixed by the energetic parameters: the maximum yield and the coefficient of maintenance. Implications of these observations have also been discussed. The linear relation for substrate consumption is tested with continuous culture data. It is shown that significant deviations at low growth rates cannot be fully accounted by the loss of viability. The situations where unstructured models will be adequate or not for system description, are evaluated and checked experimentally. Influence of an environmental factor, the temperature, on the unstructured model parameters is also quantitatively described. It is concluded that the art of unstructured model building has already reached its maturity and that now much effort should be channelled into the development and verification of structured models.

Journal ArticleDOI
TL;DR: An experimental device was constructed to allow nearly simultaneous measurements to be made on temperature and gas composition at different depths in a solid–substrate fermentation bed with a tempeh fermentation.
Abstract: An experimental device was constructed to allow nearly simultaneous measurements to be made on temperature and gas composition at different depths in a solid-substrate fermentation bed. The time-dependent values of temperature, mol % O/sub 2/ and mol % CO/sub 2/ were measured at five positions in beds 6.35 cm (2.5 in.) deep. With a tempeh fermentation (Rhiopus oligosporus growing on soybeans) the temperature gradient could be as steep as 3/sup 0/C/cm during active mold growth and concentration of CO/sub 2/ could reach 21 vol. % in the bottom layer.