scispace - formally typeset
Search or ask a question

Showing papers in "Clinical Microbiology Reviews in 2012"


Journal ArticleDOI
TL;DR: This review focuses on epidemiological and diagnostic aspects, putting them in perspective with current knowledge of parasite genotypes, and provides critical information on diagnostic methods according to the patient's background.
Abstract: Summary: The apicomplexan parasite Toxoplasma gondii was discovered a little over 100 years ago, but knowledge of its biological life cycle and its medical importance has grown in the last 40 years. This obligate intracellular parasite was identified early as a pathogen responsible for congenital infection, but its clinical expression and the importance of reactivations of infections in immunocompromised patients were recognized later, in the era of organ transplantation and HIV infection. Recent knowledge of host cell-parasite interactions and of parasite virulence has brought new insights into the comprehension of the pathophysiology of infection. In this review, we focus on epidemiological and diagnostic aspects, putting them in perspective with current knowledge of parasite genotypes. In particular, we provide critical information on diagnostic methods according to the patient's background and discuss the implementation of screening tools for congenital toxoplasmosis according to health policies.

1,261 citations


Journal ArticleDOI
TL;DR: This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection as an emerging multidrug-resistant global opportunistic pathogen.
Abstract: Stenotrophomonas maltophilia is an emerging multidrug-resistant global opportunistic pathogen. The increasing incidence of nosocomial and community-acquired S. maltophilia infections is of particular concern for immunocompromised individuals, as this bacterial pathogen is associated with a significant fatality/case ratio. S. maltophilia is an environmental bacterium found in aqueous habitats, including plant rhizospheres, animals, foods, and water sources. Infections of S. maltophilia can occur in a range of organs and tissues; the organism is commonly found in respiratory tract infections. This review summarizes the current literature and presents S. maltophilia as an organism with various molecular mechanisms used for colonization and infection. S. maltophilia can be recovered from polymicrobial infections, most notably from the respiratory tract of cystic fibrosis patients, as a cocolonizer with Pseudomonas aeruginosa. Recent evidence of cell-cell communication between these pathogens has implications for the development of novel pharmacological therapies. Animal models of S. maltophilia infection have provided useful information about the type of host immune response induced by this opportunistic pathogen. Current and emerging treatments for patients infected with S. maltophilia are discussed.

1,007 citations


Journal ArticleDOI
TL;DR: Therapeutic options for treating carbapenemase-producing enterobacteria (CPE) infect mainly hospitalized patients but also have been spreading in long-term care facilities, and pharmacodynamic simulations and experimental infections indicate that modification of the current patterns of carbapENem use against CPE warrants further attention.
Abstract: Summary: The spread of Enterobacteriaceae, primarily Klebsiella pneumoniae, producing KPC, VIM, IMP, and NDM carbapenemases, is causing an unprecedented public health crisis. Carbapenemase-producing enterobacteria (CPE) infect mainly hospitalized patients but also have been spreading in long-term care facilities. Given their multidrug resistance, therapeutic options are limited and, as discussed here, should be reevaluated and optimized. Based on susceptibility data, colistin and tigecycline are commonly used to treat CPE infections. Nevertheless, a review of the literature revealed high failure rates in cases of monotherapy with these drugs, whilst monotherapy with either a carbapenem or an aminoglycoside appeared to be more effective. Combination therapies not including carbapenems were comparable to aminoglycoside and carbapenem monotherapies. Higher success rates have been achieved with carbapenem-containing combinations. Pharmacodynamic simulations and experimental infections indicate that modification of the current patterns of carbapenem use against CPE warrants further attention. Epidemiological data, though fragmentary in many countries, indicate CPE foci and transmission routes, to some extent, whilst also underlining the lack of international collaborative systems that could react promptly and effectively. Fortunately, there are sound studies showing successful containment of CPE by bundles of measures, among which the most important are active surveillance cultures, separation of carriers, and assignment of dedicated nursing staff.

999 citations


Journal ArticleDOI
TL;DR: Although the rate of mortality from SAB is declining, it remains high, and questions remain as to whether this reflects pathogen-specific factors or poorer responses to antibiotic therapy, namely, vancomycin.
Abstract: Staphylococcus aureus bacteremia (SAB) is an important infection with an incidence rate ranging from 20 to 50 cases/100,000 population per year. Between 10% and 30% of these patients will die from SAB. Comparatively, this accounts for a greater number of deaths than for AIDS, tuberculosis, and viral hepatitis combined. Multiple factors influence outcomes for SAB patients. The most consistent predictor of mortality is age, with older patients being twice as likely to die. Except for the presence of comorbidities, the impacts of other host factors, including gender, ethnicity, socioeconomic status, and immune status, are unclear. Pathogen-host interactions, especially the presence of shock and the source of SAB, are strong predictors of outcomes. Although antibiotic resistance may be associated with increased mortality, questions remain as to whether this reflects pathogen-specific factors or poorer responses to antibiotic therapy, namely, vancomycin. Optimal management relies on starting appropriate antibiotics in a timely fashion, resulting in improved outcomes for certain patient subgroups. The roles of surgery and infectious disease consultations require further study. Although the rate of mortality from SAB is declining, it remains high. Future international collaborative studies are required to tease out the relative contributions of various factors to mortality, which would enable the optimization of SAB management and patient outcomes.

715 citations


Journal ArticleDOI
TL;DR: It is explained how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics, which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms.
Abstract: SUMMARY The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms.

610 citations


Journal ArticleDOI
TL;DR: The available evidence suggests that the greatest benefit of combination antibiotic therapy stems from the increased likelihood of choosing an effective agent during empiric therapy, rather than exploitation of in vitro synergy or the prevention of resistance during definitive treatment.
Abstract: Combination antibiotic therapy for invasive infections with Gram-negative bacteria is employed in many health care facilities, especially for certain subgroups of patients, including those with neutropenia, those with infections caused by Pseudomonas aeruginosa, those with ventilator-associated pneumonia, and the severely ill. An argument can be made for empiric combination therapy, as we are witnessing a rise in infections caused by multidrug-resistant Gram-negative organisms. The wisdom of continued combination therapy after an organism is isolated and antimicrobial susceptibility data are known, however, is more controversial. The available evidence suggests that the greatest benefit of combination antibiotic therapy stems from the increased likelihood of choosing an effective agent during empiric therapy, rather than exploitation of in vitro synergy or the prevention of resistance during definitive treatment. In this review, we summarize the available data comparing monotherapy versus combination antimicrobial therapy for the treatment of infections with Gram-negative bacteria.

605 citations


Journal ArticleDOI
TL;DR: This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of DiroFilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human andAnimal infections.
Abstract: SUMMARY Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.

582 citations


Journal ArticleDOI
TL;DR: A review of polymicrobial biofilm-mediated infections examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases.
Abstract: Summary: Microorganisms coexist in a complex milieu of bacteria, fungi, archaea, and viruses on or within the human body, often as multifaceted polymicrobial biofilm communities at mucosal sites and on abiotic surfaces. Only recently have we begun to appreciate the complicated biofilm phenotype during infection; moreover, even less is known about the interactions that occur between microorganisms during polymicrobial growth and their implications in human disease. Therefore, this review focuses on polymicrobial biofilm-mediated infections and examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases.

567 citations


Journal ArticleDOI
TL;DR: Seven new taxa isolated from healthy and lesional human and animal skin have been accepted and metabolomic research resulted in the proposal of a hypothesis on the contribution of Malassezia-synthesized aryl hydrocarbon receptor (AhR) ligands to basal cell carcinoma through UV radiation-induced carcinogenesis.
Abstract: In the last 15 years, the genus Malassezia has been a topic of intense basic research on taxonomy, physiology, biochemistry, ecology, immunology, and metabolomics. Currently, the genus encompasses 14 species. The 1996 revision of the genus resulted in seven accepted taxa: M. furfur, M. pachydermatis, M. sympodialis, M. globosa, M. obtusa, M. restricta, and M. slooffiae. In the last decade, seven new taxa isolated from healthy and lesional human and animal skin have been accepted: M. dermatis, M. japonica, M. yamatoensis, M. nana, M. caprae, M. equina, and M. cuniculi. However, forthcoming multidisciplinary research is expected to show the etiopathological relationships between these new species and skin diseases. Hitherto, basic and clinical research has established etiological links between Malassezia yeasts, pityriasis versicolor, and sepsis of neonates and immunocompromised individuals. Their role in aggravating seborrheic dermatitis, dandruff, folliculitis, and onychomycosis, though often supported by histopathological evidence and favorable antifungal therapeutic outcomes, remains under investigation. A close association between skin and Malassezia IgE binding allergens in atopic eczema has been shown, while laboratory data support a role in psoriasis exacerbations. Finally, metabolomic research resulted in the proposal of a hypothesis on the contribution of Malassezia-synthesized aryl hydrocarbon receptor (AhR) ligands to basal cell carcinoma through UV radiation-induced carcinogenesis.

464 citations


Journal ArticleDOI
TL;DR: There is much interest in whether helminth-associated immune regulation may ameliorate allergy and autoimmunity, with investigations in both laboratory models and human trials suggesting that parasites may protect against immunopathological syndromes.
Abstract: SUMMARY Helminth parasites infect almost one-third of the world9s population, primarily in tropical regions. However, regions where helminth parasites are endemic record much lower prevalences of allergies and autoimmune diseases, suggesting that parasites may protect against immunopathological syndromes. Most helminth diseases are spectral in nature, with a large proportion of relatively asymptomatic cases and a subset of patients who develop severe pathologies. The maintenance of the asymptomatic state is now recognized as reflecting an immunoregulatory environment, which may be promoted by parasites, and involves multiple levels of host regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. Currently, there is much interest in whether helminth-associated immune regulation may ameliorate allergy and autoimmunity, with investigations in both laboratory models and human trials. Understanding and exploiting the interactions between these parasites and the host regulatory network are therefore likely to highlight new strategies to control both infectious and immunological diseases.

460 citations


Journal ArticleDOI
TL;DR: Novel approaches to sepsis promise to transform sePSis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsi therapies.
Abstract: SUMMARY Sepsis is among the most common causes of death in hospitals. It arises from the host response to infection. Currently, diagnosis relies on nonspecific physiological criteria and culture-based pathogen detection. This results in diagnostic uncertainty, therapeutic delays, the mis- and overuse of antibiotics, and the failure to identify patients who might benefit from immunomodulatory therapies. There is a need for new sepsis biomarkers that can aid in therapeutic decision making and add information about screening, diagnosis, risk stratification, and monitoring of the response to therapy. The host response involves hundreds of mediators and single molecules, many of which have been proposed as biomarkers. It is, however, unlikely that one single biomarker is able to satisfy all the needs and expectations for sepsis research and management. Among biomarkers that are measurable by assays approved for clinical use, procalcitonin (PCT) has shown some usefulness as an infection marker and for antibiotic stewardship. Other possible new approaches consist of molecular strategies to improve pathogen detection and molecular diagnostics and prognostics based on transcriptomic, proteomic, or metabolic profiling. Novel approaches to sepsis promise to transform sepsis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsis therapies.

Journal ArticleDOI
TL;DR: This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Abstract: Summary: Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.

Journal ArticleDOI
TL;DR: The wound exudate that results provides a mechanistic explanation for the protection offered by serum neutralizing antibody generated by HPV L1 virus-like particle (VLP) vaccines.
Abstract: Human papillomavirus (HPV) infection of the genital tract is common in young sexually active individuals, the majority of whom clear the infection without overt clinical disease. Most of those who do develop benign lesions eventually mount an effective cell-mediated immune (CMI) response, and the lesions regress. Regression of anogenital warts is accompanied histologically by a CD4(+) T cell-dominated Th1 response; animal models support this and provide evidence that the response is modulated by antigen-specific CD4(+) T cell-dependent mechanisms. Failure to develop an effective CMI response to clear or control infection results in persistent infection and, in the case of the oncogenic HPVs, an increased probability of progression to high-grade intraepithelial neoplasia and invasive carcinoma. Effective evasion of innate immune recognition seems to be the hallmark of HPV infections. The viral infectious cycle is exclusively intraepithelial: there is no viremia and no virus-induced cytolysis or cell death, and viral replication and release are not associated with inflammation. HPV globally downregulates the innate immune signaling pathways in the infected keratinocyte. Proinflammatory cytokines, particularly the type I interferons, are not released, and the signals for Langerhans cell (LC) activation and migration, together with recruitment of stromal dendritic cells and macrophages, are either not present or inadequate. This immune ignorance results in chronic infections that persist over weeks and months. Progression to high-grade intraepithelial neoplasia with concomitant upregulation of the E6 and E7 oncoproteins is associated with further deregulation of immunologically relevant molecules, particularly chemotactic chemokines and their receptors, on keratinocytes and endothelial cells of the underlying microvasculature, limiting or preventing the ingress of cytotoxic effectors into the lesions. Recent evidence suggests that HPV infection of basal keratinocytes requires epithelial wounding followed by the reepithelization of wound healing. The wound exudate that results provides a mechanistic explanation for the protection offered by serum neutralizing antibody generated by HPV L1 virus-like particle (VLP) vaccines.

Journal ArticleDOI
TL;DR: The study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Abstract: Summary: Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.

Journal ArticleDOI
TL;DR: This review discusses the common enteric protozoa from a public health perspective, highlighting their epidemiology, modes of transmission, prevention, and control, and suggests a multidisciplinary approach to their prevention and control.
Abstract: SUMMARY Several enteric protozoa cause severe morbidity and mortality in both humans and animals worldwide. In developed settings, enteric protozoa are often ignored as a cause of diarrheal illness due to better hygiene conditions, and as such, very little effort is used toward laboratory diagnosis. Although these protozoa contribute to the high burden of infectious diseases, estimates of their true prevalence are sometimes affected by the lack of sensitive diagnostic techniques to detect them in clinical and environmental specimens. Despite recent advances in the epidemiology, molecular biology, and treatment of protozoan illnesses, gaps in knowledge still exist, requiring further research. There is evidence that climate-related changes will contribute to their burden due to displacement of ecosystems and human and animal populations, increases in atmospheric temperature, flooding and other environmental conditions suitable for transmission, and the need for the reuse of alternative water sources to meet growing population needs. This review discusses the common enteric protozoa from a public health perspective, highlighting their epidemiology, modes of transmission, prevention, and control. It also discusses the potential impact of climate changes on their epidemiology and the issues surrounding waterborne transmission and suggests a multidisciplinary approach to their prevention and control.

Journal ArticleDOI
TL;DR: The immune response is critical in preventing this disease but also results in lung damage, and future work may offer potential areas for vaccine development or immunomodulatory therapy.
Abstract: SUMMARY Although the incidence of Pneumocystis pneumonia (PCP) has decreased since the introduction of combination antiretroviral therapy, it remains an important cause of disease in both HIV-infected and non-HIV-infected immunosuppressed populations. The epidemiology of PCP has shifted over the course of the HIV epidemic both from changes in HIV and PCP treatment and prevention and from changes in critical care medicine. Although less common in non-HIV-infected immunosuppressed patients, PCP is now more frequently seen due to the increasing numbers of organ transplants and development of novel immunotherapies. New diagnostic and treatment modalities are under investigation. The immune response is critical in preventing this disease but also results in lung damage, and future work may offer potential areas for vaccine development or immunomodulatory therapy. Colonization with Pneumocystis is an area of increasing clinical and research interest and may be important in development of lung diseases such as chronic obstructive pulmonary disease. In this review, we discuss current clinical and research topics in the study of Pneumocystis and highlight areas for future research.

Journal ArticleDOI
TL;DR: The control of bed bugs is challenging and should encompass a multidisciplinary approach utilizing nonchemical means of control and the judicious use of insecticides.
Abstract: Summary: Since the late 1990s, bed bugs of the species Cimex lectularius and Cimex hemipterus have undergone a worldwide resurgence. These bed bugs are blood-sucking insects that readily bite humans. Cutaneous reactions may occur and can start out as small macular lesions that can develop into distinctive wheals of around 5 cm in diameter, which are accompanied by intense itching. Occasionally, bullous eruptions may result. If bed bugs are numerous, the patient can present with widespread urticaria or eythematous rashes. Often, bites occur in lines along the limbs. Over 40 pathogens have been detected in bed bugs, but there is no definitive evidence that they transmit any disease-causing organisms to humans. Anemia may result when bed bugs are numerous, and their allergens can trigger asthmatic reactions. The misuse of chemicals and other technologies for controlling bed bugs has the potential to have a deleterious impact on human health, while the insect itself can be the cause of significant psychological trauma. The control of bed bugs is challenging and should encompass a multidisciplinary approach utilizing nonchemical means of control and the judicious use of insecticides. For accommodation providers, risk management procedures should be implemented to reduce the potential of bed bug infestations.

Journal ArticleDOI
TL;DR: This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell.
Abstract: The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell.

Journal ArticleDOI
TL;DR: The biology of the virus is briefly touched upon and a comprehensive review regarding recent discoveries about virus transmission, virus acquisition, and human infection and disease is provided.
Abstract: SUMMARY West Nile Virus was introduced into the Western Hemisphere during the late summer of 1999 and has been causing significant and sometimes severe human diseases since that time. This article briefly touches upon the biology of the virus and provides a comprehensive review regarding recent discoveries about virus transmission, virus acquisition, and human infection and disease.

Journal ArticleDOI
TL;DR: Current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella are compiled and their connection to the clinical presentation of human patients is discussed, which ranges from minor complaints to life-threatening disease.
Abstract: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.

Journal ArticleDOI
TL;DR: A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures and could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics.
Abstract: SUMMARY The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords “pandemic influenza virus H1N1 2009” yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics.

Journal ArticleDOI
TL;DR: It is concluded that questions that should be resolved in order to improve the understanding of the importance of mixed-strain M. tuberculosis infections are highlighted.
Abstract: Numerous studies have reported that individuals can simultaneously harbor multiple distinct strains of Mycobacterium tuberculosis. To date, there has been limited discussion of the consequences for the individual or the epidemiological importance of mixed infections. Here, we review studies that documented mixed infections, highlight challenges associated with the detection of mixed infections, and discuss possible implications of mixed infections for the diagnosis and treatment of patients and for the community impact of tuberculosis control strategies. We conclude by highlighting questions that should be resolved in order to improve our understanding of the importance of mixed-strain M. tuberculosis infections.

Journal ArticleDOI
TL;DR: Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERv-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Abstract: Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.

Journal ArticleDOI
TL;DR: The objectives of this review are to discuss the epidemiology of serious and invasive pneumococcal infections in the United States in the PCV era and to review some of the pneumitiscal vaccines that are in development.
Abstract: Summary: Invasive infections caused by Streptococcus pneumoniae continue to be a major cause of morbidity and mortality worldwide, especially in children under 5 years of age. In the United States, 90% of invasive pneumococcal infections in children are caused by 13 serotypes of S. pneumoniae. The licensure (in 2000) and subsequent widespread use of a heptavalent pneumococcal conjugate vaccine (PCV7) have had a significant impact on decreasing the incidence of serious invasive pneumococcal disease (IPD) in all age groups, especially in children under 2 years of age. However, the emergence of replacement non-PCV7 serotypes, especially serotype 19A, has resulted in an increase in the incidence of serious and invasive infections. In 2010, a 13-valent PCV was licensed in the United States. However, the impact that this vaccine will have on IPD remains to be seen. The objectives of this review are to discuss the epidemiology of serious and invasive pneumococcal infections in the United States in the PCV era and to review some of the pneumococcal vaccines that are in development.

Journal ArticleDOI
TL;DR: The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression ofHBV replication and inhibition of HBV proteins, are reviewed in detail.
Abstract: Summary: Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section.

Journal ArticleDOI
TL;DR: The need and role for subtyping of influenza viruses and antiviral susceptibility testing will likely depend on qualitative (circulating subtypes and their resistance patterns) and quantitative (relative prevalence) characterization of influenza virus circulating during future epidemics and pandemics.
Abstract: Summary: The menu of diagnostic tools that can be utilized to establish a diagnosis of influenza is extensive and includes classic virology techniques as well as new and emerging methods. This review of how the various existing diagnostic methods have been utilized, first in the context of a rapidly evolving outbreak of novel influenza virus and then during the different subsequent phases and waves of the pandemic, demonstrates the unique roles, advantages, and limitations of each of these methods. Rapid antigen tests were used extensively throughout the pandemic. Recognition of the low negative predictive values of these tests is important. Private laboratories with preexisting expertise, infrastructure, and resources for rapid development, validation, and implementation of laboratory-developed assays played an unprecedented role in helping to meet the diagnostic demands during the pandemic. FDA-cleared assays remain an important element of the diagnostic armamentarium during a pandemic, and a process must be developed with the FDA to allow manufacturers to modify these assays for detection of novel strains in a timely fashion. The need and role for subtyping of influenza viruses and antiviral susceptibility testing will likely depend on qualitative (circulating subtypes and their resistance patterns) and quantitative (relative prevalence) characterization of influenza viruses circulating during future epidemics and pandemics.

Journal ArticleDOI
TL;DR: The editors of Clinical Microbiology Reviews (CMR) gratefully acknowledge the following individuals who served as reviewers for the journal during 2014.
Abstract: On behalf of the editors of Clinical Microbiology Reviews (CMR), I gratefully acknowledge the following individuals who served as reviewers for the journal during 2014. Their time and effort in reviewing articles are essential to ensuring the high quality of our publications, and their help is