scispace - formally typeset
Search or ask a question

Showing papers in "Comparative and Functional Genomics in 2014"


Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.
Abstract: Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.

1,455 citations


Journal ArticleDOI
TL;DR: The up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and the emerging concepts of their associations with other posttranscriptional gene regulation processes are reviewed.
Abstract: Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.

475 citations


Journal ArticleDOI
TL;DR: The role of microRNAs in the DNA damage/repair and cancer is reported and discussed and endogenous short noncoding molecules able to regulate gene expression at the post-transcriptional level are discussed.
Abstract: Cancer is a multistep process characterized by various and different genetic lesions which cause the transformation of normal cells into tumor cells. To preserve the genomic integrity, eukaryotic cells need a complex DNA damage/repair response network of signaling pathways, involving many proteins, able to induce cell cycle arrest, apoptosis, or DNA repair. Chemotherapy and/or radiation therapy are the most commonly used therapeutic approaches to manage cancer and act mainly through the induction of DNA damage. Impairment in the DNA repair proteins, which physiologically protect cells from persistent DNA injury, can affect the efficacy of cancer therapies. Recently, increasing evidence has suggested that microRNAs take actively part in the regulation of the DNA damage/repair network. MicroRNAs are endogenous short noncoding molecules able to regulate gene expression at the post-transcriptional level. Due to their activity, microRNAs play a role in many fundamental physiological and pathological processes. In this review we report and discuss the role of microRNAs in the DNA damage/repair and cancer.

82 citations


Journal ArticleDOI
TL;DR: The current state of knowledge regarding the expression and function of miRNAs in the neural retina is summarized and their potential uses as biomarkers for some retinal disorders are discussed.
Abstract: The health and function of the visual system rely on a collaborative interaction between diverse classes of molecular regulators. One of these classes consists of transcription factors, which are known to bind to DNA and control the transcription activities of their target genes. For a long time, it was thought that the transcription factors were the only regulators of gene expression. More recently, however, a novel class of regulators emerged. This class consists of a large number of small noncoding endogenous RNAs, namely, miRNAs. The miRNAs compose an essential component of posttranscriptional gene regulation, since they ultimately control the fate of gene transcripts. The retina, as a part of the central nervous system, is a well-established model for unraveling the molecular mechanisms underlying neuronal and glial functions. Numerous recent efforts have been made towards identification of miRNAs and their inferred roles in the visual pathway. In this review, we summarize the current state of our knowledge regarding the expression and function of miRNA in the neural retina and we discuss their potential uses as biomarkers for some retinal disorders.

46 citations


Journal ArticleDOI
TL;DR: The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid and a reduction in palmitic acid in their seed oil content and no structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.
Abstract: The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

43 citations


Journal ArticleDOI
TL;DR: The clinicopathological significance of PLK1 expression in hepatocellular carcinoma (HCC) is illustrated and it is presumed that the status of PLk1 expression might be an independent prognostic factor for HCC and targetingPLK1 might be a useful strategy for diagnosis and treatment of human HCC.
Abstract: Polo-like kinase 1 (PLK1), one of serine/threonine-protein kinase, has been demonstrated to play pivotal roles in malignant transformation. Here we illustrated the clinicopathological significance of PLK1 expression in hepatocellular carcinoma (HCC) in more detail. Immunohistochemistry was performed to detect the expression of PLK1 in 67 HCC patients as well as corresponding noncancerous liver tissues. In addition, the correlation of PLK1 expression with clinicopathological factors or prognosis of HCC was analyzed. Results showed that the expression of PLK1 was increased significantly in HCC tissues than that of corresponding normal liver tissues. The correlation between PLK1 and HCC cell differentiation or capsule invasion was also revealed. We found that PLK1 inhibition promoted cell arrest in G2/M phase of cell cycle and cell apoptosis. Our results also indicated that the potential mechanisms of PLK1 inhibition regulating cell growth involved enhancing expression of caspase3, caspase8, and Bax and decreasing expression of Bcl-2. Furthermore, we also found that PLK1 downregulation inducing inhibition of cell growth was associated with enhancing expression of p53. Thus, we presume that the status of PLK1 expression might be an independent prognostic factor for HCC and targeting PLK1 might be a useful strategy for diagnosis and treatment of human HCC.

40 citations


Journal ArticleDOI
TL;DR: The results showed no association between the studied polymorphisms and IDD in this population of northwestern Mexican Mestizo population, the first report on the contribution of gene polymorphisms onIDD in a Mexican population.
Abstract: Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population.

38 citations


Journal ArticleDOI
TL;DR: The PDCD-1 polymorphism rs36084323 was significantly associated with RA risk in Han Chinese population and may be a biomarker of early diagnosis of RA and a suitable indicator of utilizing PD-1 inhibitor for treatment of RA.
Abstract: Objective. Programmed cell death 1 (PD-1) induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of autoimmune diseases such as rheumatoid arthritis (RA). Herein, we investigate the association of PDCD-1 polymorphisms with the risk of RA among Chinese patients and healthy controls. Methods. Using the PCR-direct sequencing analysis, 4 PDCD-1 SNPs (rs36084323, rs11568821, rs2227982, and rs2227981) were genotyped in 320 RA patients and 309 matched healthy controls. Expression of PD-1 was determined in peripheral blood lymphocytes by flow cytometry and quantitative real-time reverse transcriptase polymerase chain reaction. Results. We observed that the GG genotype of rs36084323 was associated with a increased risk for developing RA (OR 1.70, 95% 1.11–2.61, ). Patients carrying G/G genotype displayed an increased mRNA level of PD-1 compared with A/A genotype and healthy controls. Meanwhile, patients homozygous for rs36084323 had induced basal PD-1 expression on activated CD4

38 citations


Journal ArticleDOI
TL;DR: It is found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.
Abstract: WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I–III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.

36 citations


Journal ArticleDOI
TL;DR: The validation study of annotated 35 EST-SSR markers which correspond to particular metabolic activity revealed polymorphism and evolutionary nature in different families of Angiospermic plants.
Abstract: Expressed sequence tags (EST) are potential source for the development of genic microsatellite markers, gene discovery, comparative genomics, and other genomic studies. In the present study, 7630 ESTs were examined from NCBI for SSR identification and characterization. A total of 263 SSRs were identified with an average density of one SSR/4.2 kb (3.4% frequency). Analysis revealed that trinucleotide repeats (47.52%) were most abundant followed by tetranucleotide (19.77%), dinucleotide (19.01%), pentanucleotide (9.12%), and hexanucleotide repeats (4.56%). Functional annotation was done through homology search and gene ontology, and 35 EST-SSRs were selected. Primer pairs were designed for evaluation of cross transferability and polymorphism among 11 plants belonging to five different families. Total 402 alleles were generated at 155 loci with an average of 2.6 alleles/locus and the polymorphic information content (PIC) ranged from 0.15 to 0.92 with an average of 0.75. The cross transferability ranged from 34.84% to 98.06% in different plants, with an average of 67.86%. Thus, the validation study of annotated 35 EST-SSR markers which correspond to particular metabolic activity revealed polymorphism and evolutionary nature in different families of Angiospermic plants.

34 citations


Journal ArticleDOI
TL;DR: Correlation analysis of the amylose, protein, and lipid contents indicated that each compound is related to the taste of cooked rice.
Abstract: We investigated the growth characteristics and analyzed the physicochemical properties of a doubled haploid population derived from a cross between “Cheongcheong” and “Nagdong” to breed a rice variety that tastes good after cooking and to detect quantitative trait loci (QTLs) associated with the taste of cooked rice. The results showed that these compounds also represent a normal distribution. Correlation analysis of the amylose, protein, and lipid contents indicated that each compound is related to the taste of cooked rice. The QTLs related to amylose content were 4 QTLs, protein content was 2 QTLs, and lipid content was 2 QTLs. Four of the QTLs associated with amylose content were detected on chromosomes 7 and 11. The index of coincidence for the QTLs related to amylose, protein, and lipid content was 70%, respectively. These markers showing high percentage of coincidence can be useful to select desirable lines for rice breeding.

Journal ArticleDOI
TL;DR: This work presents a lucid review of epigenetic machinery and epigenetic alterations involving DNA methylation, histone tail modifications, chromatin remodeling, and RNA directed epigenetic changes.
Abstract: Abiotic stress induces several changes in plants at physiological and molecular level. Plants have evolved regulatory mechanisms guided towards establishment of stress tolerance in which epigenetic modifications play a pivotal role. We provide examples of gene expression changes that are brought about by conversion of active chromatin to silent heterochromatin and vice versa. Methylation of CG sites and specific modification of histone tail determine whether a particular locus is transcriptionally active or silent. We present a lucid review of epigenetic machinery and epigenetic alterations involving DNA methylation, histone tail modifications, chromatin remodeling, and RNA directed epigenetic changes.

Journal ArticleDOI
TL;DR: Strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle Firmness increase.
Abstract: Grass carp (Ctenopharyngodon idellus) is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO) analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.

Journal ArticleDOI
TL;DR: The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulatedPD-1 expression may be a biomarker for SLE diagnosis, and PD- 1 inhibitor may be useful to SLE treatment.
Abstract: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complicated genetic inheritance. Programmed death 1 (PD-1), a negative T cell regulator to maintain peripheral tolerance, induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of SLE. In order to examine whether expression levels of PD-1 contribute to the pathogenesis of SLE, 30 patients with SLE and 30 controls were recruited and their PD-1 expression levels in peripheral blood mononuclear cells (PBMCs) were measured via flow cytometry and quantitative real-time-reverse transcription polymerase chain reaction (RT-PCR). Also, whether PD-1 expression levels are associated with the variant of the SNP rs36084323 and the SLE Disease Activity Index (SLEDAI) was studied in this work. The PD-1 expression levels of SLE patients were significantly increased compared with those of the healthy controls. The upregulated PD-1 expression levels in SLE patients were greatly associated with SLEDAI scores. No significant difference was found between PD-1 expression levels and SNP rs36084323. The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulated PD-1 expression may be a biomarker for SLE diagnosis, and PD-1 inhibitor may be useful to SLE treatment.

Journal ArticleDOI
TL;DR: The results suggested that the functional polymorphism −94ins/del ATTG in the human NFKB1 gene can contribute to cancer risk and can exert race- and cancer-specific effects on cancer risk.
Abstract: Nuclear factor-κB is associated with the pathogenesis of numerous malignancies, and the functional polymorphism −94ins/del ATTG (rs28362491) in the human NFKB1 gene is associated with cancer risk. Previous studies on the association between the −94ins/del ATTG polymorphism and cancer risk reported conflicting results. To clarify this relationship, we performed a meta-analysis of 21 case-control studies involving 6127 cases and 9238 controls. We used pooled odds ratios (ORs) with their 95% confidence intervals (95% CIs) to assess the association. We found that the NFKB1 promoter −94ins/del ATTG polymorphism was significantly associated with cancer risk in four genetic models (ins/ins versus del/del, OR = 1.47, 95% CI = 1.11–1.93; dominant model, OR = 1.26, 95% CI = 1.03–1.53; recessive model, OR = 1.26, 95% CI = 1.05–1.51; ins allele versus del allele, OR = 1.19, 95% CI = 1.05–1.35). Stratified analyses revealed a significant association between the polymorphism and ovarian, oral, and prostate cancers. Similar results were determined in an Asian population and not in a Caucasian population. Thus, our results suggested that the polymorphism can contribute to cancer risk. Moreover, the polymorphism can exert race- and cancer-specific effects on cancer risk. Further large-scale and functional studies are necessary to elucidate this possible effect.

Journal ArticleDOI
TL;DR: Predicting the B and T cell epitopes of Der f 25 can be used to benefit allergen immunotherapies and reduce the frequency of mite allergic reactions, and identify the triosephosphate isomerase pattern (PS001371).
Abstract: The house dust mites are major sources of indoor allergens for humans, which induce asthma, rhinitis, dermatitis, and other allergic diseases. Der f 25 is a triosephosphate isomerase, representing the major allergen identified in Dermatophagoides farinae. The objective of this study was to predict the B and T cell epitopes of Der f 25. In the present study, we analyzed the physiochemical properties, function motifs and domains, and structural-based detailed features of Der f 25 and predicted the B cell linear epitopes of Der f 25 by DNAStar protean system, BPAP, and BepiPred 1.0 server and the T cell epitopes by NetMHCIIpan-3.0 and NetMHCII-2.2. As a result, the sequence and structure analysis identified that Der f 25 belongs to the triosephosphate isomerase family and exhibited a triosephosphate isomerase pattern (PS001371). Eight B cell epitopes (11–18, 30–35, 71–77, 99–107, 132–138, 173–187, 193–197, and 211–224) and five T cell epitopes including 26–34, 38–54, 66–74, 142–151, and 239–247 were predicted in this study. These results can be used to benefit allergen immunotherapies and reduce the frequency of mite allergic reactions.

Journal ArticleDOI
TL;DR: The novel analysis methods that allow us to perform correlation analysis to identify metabolites that significantly correlate over time during growth on the different carbon sources are developed, and an interaction map is reconstructed that provides information of how different metabolic pathways have correlated patterns during growing on theDifferent carbon sources.
Abstract: Metabolic footprinting offers a relatively easy approach to exploit the potentials of metabolomics for phenotypic characterization of microbial cells. To capture the highly dynamic nature of metabolites, we propose the use of dynamic metabolic footprinting instead of the traditional method which relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological replicates. In order to analyze the dynamic mass spectrometry data, we developed the novel analysis methods that allow us to perform correlation analysis to identify metabolites that significantly correlate over time during growth on the different carbon sources. Both positive and negative electrospray ionization (ESI) modes were performed to obtain the complete information about the metabolite content. Using sparse principal component analysis (Sparse PCA), we further identified those pairs of metabolites that significantly contribute to the separation. From the list of significant metabolite pairs, we reconstructed an interaction map that provides information of how different metabolic pathways have correlated patterns during growth on the different carbon sources.

Journal ArticleDOI
TL;DR: In this paper, the authors compared metabolic differences between muscle and intramuscular adipose (IMA) tissues in the longissimus dorsi (LD) of Hanwoo (Bos taurus coreanae) using RNA-seq technology and a systems biology approach.
Abstract: The interrelationship between muscle and adipose tissues plays a major role in determining the quality of carcass traits. The objective of this study was to compare metabolic differences between muscle and intramuscular adipose (IMA) tissues in the longissimus dorsi (LD) of Hanwoo (Bos taurus coreanae) using the RNA-seq technology and a systems biology approach. The LD sections between the 6th and 7th ribs were removed from nine (each of three cows, steers, and bulls) Hanwoo beef cattle (carcass weight of kg) immediately after slaughter. The total mRNA from muscle, IMA, and subcutaneous adipose and omental adipose tissues were isolated and sequenced. The reads that passed quality control were mapped onto the bovine reference genome (build bosTau6), and differentially expressed genes across tissues were identified. The KEGG pathway enrichment tests revealed the opposite direction of metabolic regulation between muscle and IMA. Metabolic gene network analysis clearly indicated that oxidative metabolism was upregulated in muscle and downregulated in IMA. Interestingly, pathways for regulating cell adhesion, structure, and integrity and chemokine signaling pathway were upregulated in IMA and downregulated in muscle. It is thus inferred that IMA may play an important role in the regulation of development and structure of the LD tissues and muscle/adipose communication.

Journal ArticleDOI
TL;DR: A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications.
Abstract: Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications.

Journal ArticleDOI
TL;DR: The analysis of rice landraces from different regions of Bangladesh including some high yielding BRRI varieties were analyzed by 34 polymorphic microsatellite markers yielding a total of 258 reproducible alleles, making the latter potentially amenable to identity verification.
Abstract: Bangladesh is a reservoir of diverse rice germplasm and is home to many landraces with unique, important traits. Molecular characterization of these landraces is of value for their identification, preservation, and potential use in breeding programs. Thirty-eight rice landraces from different regions of Bangladesh including some high yielding BRRI varieties were analyzed by 34 polymorphic microsatellite markers yielding a total of 258 reproducible alleles. The analysis could locate 34 unique identifiers for 21 genotypes, making the latter potentially amenable to identity verification. An identity map for these genotypes was constructed with all the 12 chromosomes of the rice genome. Polymorphism information content (PIC) scores of the 34 SSR markers were 0.098 to 0.89 where on average 7.5 alleles were observed. A dendogram constructed using UPGMA clustered the varieties into two major groups and five subgroups. In some cases, the clustering matched with properties like aromaticity, stickiness, salt tolerance, and photoperiod insensitivity. The results will help breeders to work towards the proper utilization of these landraces for parental selection and linkage map construction for discovery of useful alleles.

Journal ArticleDOI
TL;DR: It is indicated that neural networks may represent a potentially more useful decision support tool than conventional statistical methods for predicting the outcome of patients with non-small cell lung cancer and that some molecular markers, such as γ-H2AX, enhance their predictive ability.
Abstract: Cancer is a leading cause of death worldwide and the prognostic evaluation of cancer patients is of great importance in medical care. The use of artificial neural networks in prediction problems is well established in human medical literature. The aim of the current study was to assess the prognostic value of a series of clinical and molecular variables with the addition of γ-H2AX—a new DNA damage response marker—for the prediction of prognosis in patients with early operable non-small cell lung cancer by comparing the γ-H2AX-based artificial network prediction model with the corresponding LR one. Two prognostic models of 96 patients with 27 input variables were constructed by using the parameter-increasing method in order to compare the predictive accuracy of neural network and logistic regression models. The quality of the models was evaluated by an independent validation data set of 11 patients. Neural networks outperformed logistic regression in predicting the patient's outcome according to the experimental results. To assess the importance of the two factors p53 and γ-H2AX, models without these two variables were also constructed. JR and accuracy of these models were lower than those of the models using all input variables, suggesting that these biological markers are very important for optimal performance of the models. This study indicates that neural networks may represent a potentially more useful decision support tool than conventional statistical methods for predicting the outcome of patients with non-small cell lung cancer and that some molecular markers, such as γ-H2AX, enhance their predictive ability.

Journal ArticleDOI
TL;DR: The meta-analysis of case-control studies and results showed that the SNP49 polymorphism of CTLA4 gene was related to increased risk of GO.
Abstract: Many studies have established that T-lymphocyte antigen-4 (CTLA4) is a susceptible gene for Graves' disease (GD). Also many studies showed the association between the CTLA4 exon-1 49A/G polymorphism and the risk of developing Graves' ophthalmopathy (GO) in GD patients. But those results were inconsistent. In recent years many new studies were published which helped to shed light on the relationship of CTLA4 SNP49 with GO. So we performed the meta-analysis to explore the association between the SNP49 and GO susceptibility in GD patients. Studies up to February 29, 2012, were searched by using PubMed. The odds ratio was used to evaluate the strength of the association. Altogether 12 case-control studies involving 2,505 participants were included in the meta-analysis. Results showed that the G allele was related to the increased risk of GO compared with the A allele under allelic genetic model (OR = 1.14, 95% CI: 1.14-1.72, P = 0.001) in European subgroup. No publication bias was detected. Our results showed that the SNP49 polymorphism of CTLA4 gene was related to increased risk of GO.

Journal ArticleDOI
TL;DR: It is suggested that DDRT-PCR could be employed to mine NGS data in a wide range of applications in transcriptomic studies, and the genes identified in the present study are promising candidates for further elucidation of the salt tolerance mechanisms in R. trigyna.
Abstract: Next generation sequencing (NGS) technologies have been used to generate huge amounts of sequencing data from many organisms. However, the correct choice of candidate genes and prevention of false-positive results computed from digital gene expression (DGE) of RNA-seq data are vital when using these genetic resources. We indirectly identified 18 salt-stress-induced Reaumuria trigyna transcripts from the transcriptome sequencing data using differential-display reverse transcription PCR (DDRT-PCR) combined with local BLAST searches. Highly consistent with the DGE results, the quantitative real-time PCR expression patterns of these transcripts showed strong upregulation by salt stress, suggesting that these genes may play important roles in R. trigyna's survival under high-salt environments. The method presented here successfully identified responsive genes from the massive amount of RNA-seq data. Thus, we suggest that DDRT-PCR could be employed to mine NGS data in a wide range of applications in transcriptomic studies. In addition, the genes identified in the present study are promising candidates for further elucidation of the salt tolerance mechanisms in R. trigyna.

Journal ArticleDOI
Daojun Cheng1, Wenliang Qian1, Meng Meng1, Yonghu Wang1, Jian Peng1, Qingyou Xia1 
TL;DR: Comparative analysis demonstrated that the orthologs of each of 13 BTB protein genes present a rigorous orthologous relationship in the silkworm and other surveyed insects, indicating conserved functions of these genes during insect evolution.
Abstract: The BTB domain is a conserved protein-protein interaction motif. In this study, we identified 56 BTB domain-containing protein genes in the silkworm, in addition to 46 in the honey bee, 55 in the red flour beetle, and 53 in the monarch butterfly. Silkworm BTB protein genes were classified into nine subfamilies according to their domain architecture, and most of them could be mapped on the different chromosomes. Phylogenetic analysis suggests that silkworm BTB protein genes may have undergone a duplication event in three subfamilies: BTB-BACK-Kelch, BTB-BACK-PHR, and BTB-FLYWCH. Comparative analysis demonstrated that the orthologs of each of 13 BTB protein genes present a rigorous orthologous relationship in the silkworm and other surveyed insects, indicating conserved functions of these genes during insect evolution. Furthermore, several silkworm BTB protein genes exhibited sex-specific expression in larval tissues or at different stages during metamorphosis. These findings not only contribute to a better understanding of the evolution of insect BTB protein gene families but also provide a basis for further investigation of the functions of BTB protein genes in the silkworm.

Journal ArticleDOI
TL;DR: The results demonstrate that transmembrane protein 60 and dihydropyrimidine dehydrogenase are associated with increasing marbling fat and suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.
Abstract: Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7) using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60) and dihydropyrimidine dehydrogenase (DPYD) are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.

Journal ArticleDOI
TL;DR: The results suggest that the EGFR R521K polymorphism is not associated with risk of cancer, but the different chemosensitivity to anticancer drugs may need further investigation.
Abstract: The EGFR R521K polymorphism has been shown to reduce the activity of EGFR; however, the association between EGFR R521K polymorphism and the risk of cancer remains inconclusive; therefore we performed a meta-analysis to evaluate the relationship between EGFR R521K polymorphism and susceptibility to cancer. Our results suggest that the EGFR R521K polymorphism is not associated with risk of cancer, but the different chemosensitivity to anticancer drugs may need further investigation.

Journal ArticleDOI
TL;DR: The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes, which are relevant to rhizospheric habitat by pangenome analysis.
Abstract: Pseudomonas aeruginosa PGPR2 is a mung bean rhizosphere strain that produces secondary metabolites and hydrolytic enzymes contributing to excellent antifungal activity against Macrophomina phaseolina, one of the prevalent fungal pathogens of mung bean. Genome sequencing was performed using the Ion Torrent Personal Genome Machine generating 1,354,732 reads (6,772,433 sequenced bases) achieving ~25-fold coverage of the genome. Reference genome assembly using MIRA 3.4.0 yielded 198 contigs. The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes. Strain specific and core genes of P. aeruginosa PGPR2 that are relevant to rhizospheric habitat were identified by pangenome analysis. Genes involved in plant growth promoting function such as synthesis of ACC deaminase, indole-3-acetic acid, trehalose, mineral scavenging siderophores, hydrogen cyanide, chitinases, acyl homoserine lactones, acetoin, 2,3-butanediol, and phytases were identified. In addition, niche-specific genes such as phosphate solubilising 3-phytase, adhesins, pathway-specific transcriptional regulators, a diguanylate cyclase involved in cellulose synthesis, a receptor for ferrienterochelin, a DEAD/DEAH-box helicase involved in stress tolerance, chemotaxis/motility determinants, an HtpX protease, and enzymes involved in the production of a chromanone derivative with potent antifungal activity were identified.

Journal ArticleDOI
TL;DR: Multivariate Cox proportional hazards regression models showed that OPN −443C>T gene polymorphisms were closely correlated to poor NSCLC prognosis.
Abstract: Background. Osteopontin (OPN) is associated with prognosis of patients with non-small-cell lung cancer (NSCLC). However, little is known about the association between OPN gene polymorphism and the chemotherapy response in NSCLC patients. Methods. A total of 497 patients with inoperable advanced stage of NSCLC (stages III B and IV NSCLC) were enrolled. All patients had received platinum-based chemotherapy. OPN gene polymorphisms at 156 GG/G, 443 C/T, and −66T/G were determined. Results. The genotypes and allele frequency of −443C>T were significantly different between the responders and nonresponders. Responders had a markedly higher frequency of −443TT genotype than responders (40.71% versus 19.09%, P T gene polymorphisms were closely correlated to poor NSCLC prognosis. Conclusion. OPN −443C>T gene polymorphism may be used as a molecular marker to predict the treatment response to chemotherapy in advanced NSCLC patients.

Journal ArticleDOI
TL;DR: In this paper, a microarray approach was used to survey the mRNA expression changes in response to JHA in the silkworm integument and found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument.
Abstract: Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling.

Journal ArticleDOI
TL;DR: The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.
Abstract: Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.