scispace - formally typeset
Search or ask a question

Showing papers in "Contributions to Mineralogy and Petrology in 2014"


Journal ArticleDOI
TL;DR: In this article, the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas were reported.
Abstract: Differentiation of mantle-derived, hydrous, basaltic magmas is a fundamental process to produce evolved intermediate to SiO2-rich magmas that form the bulk of the middle to shallow continental and island arc crust. This study reports the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas. Fractional crystallization was approached by synthesis of starting materials representing the liquid composition of the previous, higher temperature experiment. Temperatures ranged from near-liquidus at 1,170 °C to near-solidus conditions at 700 °C. H2O contents varied from 3.0 to more than 10 wt%. The liquid line of descent covers the entire compositional range from olivine–tholeiite (1,170 °C) to high-silica rhyolite (700 °C) and evolves from metaluminous to peraluminous compositions. The following crystallization sequence has been established: olivine → clinopyroxene → plagioclase, spinel → orthopyroxene, amphibole, titanomagnetite → apatite → quartz, biotite. Anorthite-rich plagioclase and spinel are responsible for a marked increase in SiO2-content (from 51 to 53 wt%) at 1,040 °C. At lower temperatures, fractionation of amphibole, plagioclase and Fe–Ti oxide over a temperature interval of 280 °C drives the SiO2 content continuously from 53 to 78 wt%. Largest crystallization steps were recorded around 1,040 °C and at 700 °C. About 40 % of ultramafic plutonic rocks have to crystallize to generate basaltic–andesitic liquids, and an additional 40 % of amphibole–gabbroic cumulate to produce granitic melts. Andesitic liquids with a liquidus temperature of 1,010 °C only crystallize 50 % over an 280 °C wide range to 730 °C implying that such liquids form mobile crystal mushes (<50 % crystals) in long-lived magmatic systems in the middle crust, allowing for extensive fractionation, assimilation and hybridization with periodic replenishment of more mafic magmas from deeper magma reservoirs.

301 citations


Journal ArticleDOI
TL;DR: In this article, a model for prediction of intrusion fertility for Ta is proposed, which can be traced through fractionated granitic series and can be used to predict the fertility of Ta-rich melts.
Abstract: Igneous rocks with high Ta concentrations share a number of similarities such as high Ta/Nb, low Ti, LREE and Zr concentrations and granitic compositions. These features can be traced through fractionated granitic series. Formation of Ta-rich melts begins with anatexis in the presence of residual biotite, followed by magmatic crystallization of biotite and muscovite. Crystallization of biotite and muscovite increases Ta/Nb and reduces the Ti content of the melt. Titanium-bearing oxides such as rutile and titanite are enriched in Ta and have the potential to deplete Ta at early stages of fractionation. However, mica crystallization suppresses their saturation and allows Ta to increase in the melt. Saturation with respect to Ta and Nb minerals occurs at the latest stages of magmatic crystallization, and columbite can originate from recrystallization of mica. We propose a model for prediction of intrusion fertility for Ta.

198 citations


Journal ArticleDOI
TL;DR: In this article, a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO-MgO-Al2O3-SiO2-H2O is presented.
Abstract: We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO–MgO–Al2O3–SiO2–H2O that is based on the Holland–Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe–Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative P–T sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized detrital chlorite from the Zone houillere in the French Western Alps.

181 citations


Journal ArticleDOI
TL;DR: A comparison of experimental and calculated values shows that calculated crystallization temperatures are reasonable estimates as mentioned in this paper, but they do not necessarily reflect compositional variation in the crystallizing magmas and crystallization temperature and not the calculated parameters.
Abstract: Amphibole is widely employed to calculate crystallization temperature and pressure, although its potential as a geobarometer has always been debated. Recently, Ridolfi et al. (Contrib Mineral Petrol 160:45–66, 2010) and Ridolfi and Renzulli (Contrib Mineral Petrol 163:877–895, 2012) have presented calibrations for calculating temperature, pressure, fO2, melt H2O, and melt major and minor oxide composition from amphibole with a large compositional range. Using their calibrations, we have (i) calculated crystallization conditions for amphibole from eleven published experimental studies to examine the problems and the potential of the new calibrations; and (ii) calculated crystallization conditions for amphibole from basaltic–andesitic pyroclasts erupted during the paroxysmal 2010 eruption of Mount Merapi in Java, Indonesia, to infer pre-eruptive conditions. Our comparison of experimental and calculated values shows that calculated crystallization temperatures are reasonable estimates. Calculated fO2 and melt SiO2 content yields potentially useful estimates at moderately reduced to moderately oxidized conditions and intermediate to felsic melt compositions. However, calculated crystallization pressure and melt H2O content are untenable estimates that largely reflect compositional variation in the crystallizing magmas and crystallization temperature and not the calculated parameters. Amphibole from Merapi’s pyroclasts yields calculated conditions of ~200–800 MPa, ~900–1,050 °C, ~NNO + 0.3–NNO + 1.1, ~3.7–7.2 wt% melt H2O, and ~58–71 wt% melt SiO2. We interpret the variations in calculated temperature, fO2, and melt SiO2 content as reasonable estimates, but conclude that the large calculated pressure variation for amphibole from Merapi and many other arc volcanoes is evidence for thorough mixing of mafic to felsic magmas and not necessarily evidence for crystallization over a large depth range. In contrast, bimodal pressure estimates obtained for other arc magmas reflect amphibole crystallization from mafic and more evolved magmas, respectively, and should not necessarily be taken as evidence for crystallization in two reservoirs at variable depth.

171 citations


Journal ArticleDOI
TL;DR: The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic to felsic, were produced during the collision of India with Eurasia as mentioned in this paper.
Abstract: The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic (SiO2 = 42 %) to felsic (SiO2 = 74 %), were produced during the collision of India with Eurasia. The mafic and ultramafic members of the suite are characterized by phenocrysts of phlogopite, olivine and clinopyroxene, low SiO2, high MgO and Mg/Fe ratios, and olivine forsterite contents of Fo87 to Fo93, indicative of equilibrium with mantle olivine and orthopyroxene. Direct melting of the mantle, on the other hand, could not have produced the felsic members. They have a phenocryst assemblage of plagioclase, amphibole and quartz, high SiO2 and low MgO, with Mg/Fe ratios well below the values expected for a melt in equilibrium with the mantle. Furthermore, the lack of decrease in Cr with increasing SiO2 and decreasing MgO from ultramafic to felsic rocks precludes the possibility that the felsic members were derived by fractional crystallization from the mafic members. Similarly, magma mixing, crustal contamination and crystal accumulation can be excluded as important processes. Yet all members of the suite share similar incompatible element and radiogenic isotope ratios, which suggests a common origin and source. We propose that melting for all members of the shoshonite suite was initiated in continental crust that was thrust into the upper mantle at various points along the transpressional Red River-Ailao Shan-Batang-Lijiang fault system. The melt formed by high-degree, fluid-absent melting reactions at high-T and high-P and at the expense of biotite and phengite. The melts acquired their high concentrations of incompatible elements as a consequence of the complete dissolution of pre-existing accessory minerals. The melts produced were quartz-saturated and reacted with the overlying mantle to produce garnet and pyroxene during their ascent. The felsic magmas reacted little with the adjacent mantle and preserved the essential features of their original chemistry, including their high SiO2, low Ni, Cr and MgO contents, and low Mg/Fe ratio, whereas the mafic and ultramafic magmas are the result of extensive reaction with the mantle. Although the mafic magmas preserved the incompatible element and radiogenic isotope ratios of their crustal source, buffering by olivine and orthopyroxene extensively modified their MgO, Ni, Cr, SiO2 contents and Mg/Fe ratio to values dictated by equilibrium with the mantle.

157 citations


Journal ArticleDOI
TL;DR: In this article, the authors used peridotites along the southern margin of the Sulu UHP terrane to understand the evolution of continental cratons and their margins and showed that the deep lithosphere of the cratonic margin experienced Proterozoic metasomatic modification, followed by a strong Early Mesozoic (~470 Ma) tectonothermal event and the Early Mesogeneic collision and northward subduction of the Yangtze craton.
Abstract: The collision between the North and South China cratons in Middle Triassic time (240–225 Ma) created the world’s largest belt of ultrahigh-pressure (UHP) metamorphism. U–Pb ages, Hf isotope systematics and trace element compositions of zircons from the Xugou, Yangkou and Hujialing peridotites in the Sulu UHP terrane mainly record a ~470 Ma tectonothermal event, coeval with the Early Paleozoic kimberlite eruptions within the North China craton. This event is interpreted as the result of metasomatism by fluids/melts derived from multiple sources including a subducting continental slab. The peridotites also contain zircons with ages of ~3.1 Ga, and Hf isotope data imply a component ≥3.2 Ga old. Most zircon Hf depleted mantle model ages are ~1.3 Ga, suggesting that the deep subcontinental lithospheric mantle beneath the southeastern margin of the North China craton experienced a intense mid-Mesoproterozoic metasomatism by asthenospheric components, similar to the case for the eastern part of this craton. Integrating data from peridotites along the southern margin of the craton, we argue that the deep lithosphere of the cratonic margin (≥3.2 Ga old), from which the Xugou, Yangkou and Hujialing peridotites were derived, experienced Proterozoic metasomatic modification, followed by a strong Early Paleozoic (~470 Ma) tectonothermal event and the Early Mesozoic (~230 Ma) collision and northward subduction of the Yangtze craton. The Phanerozoic decratonization of the eastern North China craton, especially along its southern margin, was not earlier than the Triassic continental collision. This work also demonstrates that although zircons are rare in peridotitic rocks, they can be used to unravel the history of specific lithospheric domains and thus contribute to our understanding of the evolution of continental cratons and their margins.

147 citations


Journal ArticleDOI
TL;DR: In this article, the ages of plutonic ejecta clasts were determined via uranium decay series and (U-Th)/He dating of zircon, with an average age of 49.7 ± 2.5 ka.
Abstract: The Campi Flegrei volcanic district (Naples region, Italy) is a 12-km-wide, restless caldera system that has erupted at least six voluminous ignimbrites during the late Pleistocene, including the >300 km3 Campanian ignimbrite (CI) which originated from the largest known volcanic event of the Mediterranean region. The Breccia Museo (BM), a petrologically heterogeneous and stratigraphically complex volcanic deposit extending over 200 km2 in close proximity to Campi Flegrei, has long remained contentious regarding its age and stratigraphic relation to the CI. Here, we present crystallization and eruption ages for BM plutonic ejecta clasts that were determined via uranium decay series and (U–Th)/He dating of zircon, respectively. Despite mineralogical and textural heterogeneity of these syenitic clasts, their U–Th zircon rim crystallization ages are indistinguishable with an average age of 49.7 ± 2.5 ka (2σ errors; mean square of weighted deviates MSWD = 1.2; n = 34). A subset of these crystals was used to obtain disequilibrium-corrected (U–Th)/He zircon ages which average 41.7 ± 1.8 ka (probability of fit P = 0.54; n = 15). This age closely overlaps with published CI 40Ar/39Ar eruption ages (40.6 ± 0.1 ka) after recalibration to recently revised flux monitor ages. Concordant eruption ages for BM and CI agree with previous chemostratigraphic and paleomagnetic correlations, suggesting their origin from the same eruption. However, they are at variance with recalibrated 40Ar/39Ar ages which have BM postdate CI by 3 ± 1 ka. BM syenites show similar geochemical and Sr–Nd isotopical features of pre-caldera rocks erupted between 58 and 46 ka, but are distinctive from subsequent caldera-forming magmas. Energy-constrained assimilation and fractional crystallization modeling of Nd–Sr isotopic data suggests that pre-caldera magmas formed a carapace of BM-type intrusions in a mid-crust magma chamber (≥8 km depth) shielding the younger CI magma from contamination by Hercynian basement wall rocks. An ~41–50 ka hiatus in crystallization ages implies rapid solidification of these pre-CI intrusions. This argues against protracted pre-eruptive storage of a large volume of CI magma at shallow crustal levels.

121 citations


Journal ArticleDOI
TL;DR: The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4-15 wt% Al2O3, 79-821-ppm Sr) often in thin-section scale and even in single crystals.
Abstract: Ciomadul is the youngest volcano in the Carpathian–Pannonian region produced crystal-rich high-K dacites that contain abundant amphibole phenocrysts. The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4–15 wt% Al2O3, 79–821 ppm Sr) often in thin-section scale and even in single crystals. Two amphibole populations were observed in the dacite: low-Al hornblendes represent a cold ( 900 °C) mafic magma. Amphibole thermobarometry suggests that the silicic crystal mush was stored in an upper crustal storage (~8–12 km). This was also the place where the erupted dacitic magma was formed during the remobilization of upper crustal silicic crystal mush body by hot mafic magma indicated by simple-zoned and composite amphiboles. This includes reheating (by ~200 °C) and partial remelting of different parts of the crystal mush followed by intensive crystallization of the second mineral population (including pargasites). Breakdown textures of amphiboles imply that they were formed by reheating in case of hornblendes, suggesting that pre-eruptive heating and mixing could take place within days or weeks before the eruption. The decompression rim of pargasites suggests around 12 days of magma ascent in the conduit. Several arc volcanoes produce mixed intermediate magmas with similar bimodal amphibole cargo as the Ciomadul, but in our dacite the two amphibole population can be found even in a single crystal (composite amphiboles). Our study indicates that high-Al pargasites form as a second generation in these magmas after the mafic replenishment into a silicic capture zone; thus, they cannot unambiguously indicate a deeper mafic storage zone beneath these volcanoes. The simple-zoned and composite amphiboles provide direct evidence that significant compositional variations of amphiboles do not necessarily mean variation in the pressure of crystallization even if the Al-tschermak substitution can be recognized, suggesting that amphibole barometers that consider only amphibole composition may often yield unrealistic pressure variation.

120 citations


Journal ArticleDOI
TL;DR: Two-feldspar thermometry and diffusion chronometry from sanidine, orthopyroxene and quartz from multiple samples of the Bishop Tuff, California, to constrain the temperature stratification within the pre-eruptive magma body and the timescales of mixing prior to its evacuation was presented in this paper.
Abstract: We present two-feldspar thermometry and diffusion chronometry from sanidine, orthopyroxene and quartz from multiple samples of the Bishop Tuff, California, to constrain the temperature stratification within the pre-eruptive magma body and the timescales of magma mixing prior to its evacuation. Two-feldspar thermometry yields estimates that agree well with previous Fe–Ti oxide thermometry and gives a ~80 °C temperature difference between the earlier- and later-erupted regions of the magma chamber. Using the thermometry results, we model diffusion of Ti in quartz, and Ba and Sr in sanidine as well as Fe–Mg interdiffusion in orthopyroxene to yield timescales for the formation of overgrowth rims on these crystal phases. Diffusion profiles of Ti in quartz and Fe–Mg in orthopyroxene both yield timescales of <150 years for the formation of overgrowth rims. In contrast, both Ba and Sr diffusion in sanidine yield nominal timescales 1–2 orders of magnitude longer than these two methods. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. growth zoning exists). Utilising the divergent diffusion behaviour of Ba and Sr, we place constraints on the initial width of the interface and can refine our initial conditions considerably, bringing Ba and Sr data into alignment, and yielding timescales closer to 500 years, the majority of which are then within uncertainty of timescales modelled from Ti diffusion in quartz. Care must be thus taken when using Ba in sanidine geospeedometry in evolved magmatic systems where no other phases or elements are available for comparative diffusion profiling. Our diffusion modelling reveals piecemeal rejuvenation of the lower parts of the Bishop Tuff magma chamber at least 500 years prior to eruption. Timescales from our mineral profiling imply either that diffusion coefficients currently used are uncertain by 1–2 orders of magnitude, or that the minerals concerned did not experience a common history, despite being extracted from the same single pumice clasts. Introduction of the magma initiating crystallisation of the contrasting rims on sanidine, quartz, orthopyroxene and zircon was prolonged, and may be a marker of other processes that initiated the Bishop Tuff eruption rather than the trigger itself.

107 citations


Journal ArticleDOI
TL;DR: In this paper, Bosse et al. showed that the Cean Unit and the Upper Unit of Ile de Groix along the Ibero-Armorican Arc share a blueschist facies event constrained at ca. 360 −370 −1.
Abstract: Blueschist facies terranes in the Variscan Ibero-Armorican Arc are restricted to scarce and relatively small areas. One of these examples is the Cean Unit, which is the westernmost exposure of the middle allochthonous sheet of the Variscan belt in the Malpica–Tui Complex (NW Iberian Massif). The Cean Unit is a highly condensed metamorphic succession with a lower part in the blueschist facies and an upper part without HP relicts. It comprises variable proportions of glaucophane–chloritoid-bearing metapelites and mafic rocks with abundant well-preserved pseudomorphs after euhedral lawsonite. Both lithologies show systematic changes in texture and mineral composition that are spatially related depending on deformation. The metamorphic evolution of the metabasic rocks has been constrained in the P–T space through pseudosection approach and is characterised by H2O-undersaturated prograde evolution induced by the crystallisation of lawsonite. Peak conditions in the blueschist/LT-eclogite facies have been constrained at ca. 2.2 GPa and 560 °C. Exhumation-related metamorphism is characterised by a nearly isothermal decompression from the lawsonite-bearing fields to fields with stable albite at P ≈ 1 GPa. This lead to the pseudomorphism of lawsonite in the early-decompression stages, and a subsequent amphibolite–greenschist facies overprint at P < 0.8 GPa and T ≈ 440–480 °C. The preservation of the lawsonite crystal shape despite complete retrogression indicates that pseudomorphism occurred as a static process and that particular levels of the blueschist host rock were not affected by penetrative deformation during exhumation. 40Ar/39Ar step heating of phengitic muscovite from the pelitic schists interbedded with the lawsonite pseudomorph-bearing metabasic rocks yield plateau ages of ca. 363 ± 2 and 354 ± 1 Ma. The older age is interpreted as the age of the peak blueschist facies metamorphism. The age of 355 Ma is interpreted as a cooling age and is inferred to represent some point relatively close to peak conditions at the onset of the isothermal decompression. 40Ar/39Ar dating of muscovite from the quartzo-feldspathic mylonites of the Bembibre–Cean detachment, at the base of the Cean Unit, yields an age of ca. 337 ± 3 Ma, interpreted as the age of the post-nappe extensional tectonics. Similar data obtained from the blueschists of Ile de Groix (Armorican Massif; Bosse et al. in Chem Geol 220:21–45, 2005) support the equivalence of the Cean Unit and the Upper Unit of Ile de Groix along the Ibero-Armorican Arc and suggest that these units share a blueschist facies event constrained at ca. 360–370 Ma, that is inferred to represent the Late Devonian–Early Carboniferous subduction of the northern margin of Gonwana beneath Laurussia.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the consequences of overstepping the garnet isograd reaction by comparing the composition of garnet formed at overstepped P-T conditions (the overstep or “OS” model) with the P -T conditions that would be inferred by assuming garnet nucleated in equilibrium with the matrix assemblage at the isograda (the equilibrium or "EQ" model).
Abstract: The consequences of overstepping the garnet isograd reaction have been investigated by comparing the composition of garnet formed at overstepped P–T conditions (the overstep or “OS” model) with the P–T conditions that would be inferred by assuming garnet nucleated in equilibrium with the matrix assemblage at the isograd (the equilibrium or “EQ” model). The garnet nucleus composition formed at overstepped conditions is calculated as the composition that produces the maximum decrease in Gibbs free energy from the equilibrated, garnet-absent, matrix assemblage for the bulk composition under study. Isopleths were then calculated for this garnet nucleus composition assuming equilibrium with the matrix assemblage (the EQ model). Comparison of the actual P–T conditions of nucleation (the OS model) with those inferred from the EQ model reveals considerable discrepancy between the two. In general, the inferred garnet nucleation P–T conditions (the EQ model) are at a lower temperature and higher or lower pressure (depending on the coexisting calcic phase(s)) than the actual (OS model) nucleation conditions. Moreover, the degree of discrepancy increases with the degree of overstepping. Independent estimates of the pressure of nucleation of garnet were made using the Raman shift of quartz inclusions in garnet (quartz-in-garnet or QuiG barometry). To test the validity of this method, an experimental synthesis of garnet containing quartz inclusions was made at 800 °C, 20 kbar, and the measured Raman shift reproduced the synthesis conditions to within 120 bars. Raman band shifts from three natural samples were then used to calculate an isochore along which garnet was presumed to have nucleated. Model calculations were made at several temperatures along this isochore (the OS model), and these P–T conditions were compared to those computed assuming equilibrium nucleation (the EQ model) to estimate the degree of overstepping displayed by these samples. A sample from the garnet isograd in eastern Vermont is consistent with overstepping of around 10 degrees and 0.6 kbar (affinities of around 2 kJ/mole garnet). A sample from the staurolite–kyanite zone in the same terrane requires overstepping of around 50 °C and 2–5 kbar (affinities of around 10–18 kJ/mole garnet). A similar amount of overstepping was inferred for a blueschist sample from Sifnos, Greece. These results indicate that overstepping of garnet nucleation reactions may be common and pronounced in regionally metamorphosed terranes, and that the P–T conditions and paths inferred from garnet zoning studies may be egregiously in error.

Journal ArticleDOI
TL;DR: The Kokchetav complex in Kazakhstan contains garnet-bearing gneisses that formed by partial melting of metasedimentary rocks at ultra-high-pressure (UHP) conditions as discussed by the authors.
Abstract: The Kokchetav complex in Kazakhstan contains garnet-bearing gneisses that formed by partial melting of metasedimentary rocks at ultrahigh-pressure (UHP) conditions. Partial melting and melt extraction from these rocks is documented by a decrease in K2O and an increase in FeO + MgO in the restites. The most characteristic trace element feature of the Kokchetav UHP restites is a strong depletion in light rare earth elements (LREE), Th and U. This is attributed to complete dissolution of monazite/allanite in the melt and variable degree of melt extraction. In contrast, Zr concentrations remain approximately constant in all gneisses. Using experimentally determined solubilities of LREE and Zr in high-pressure melts, these data constrain the temperature of melting to ~1,000 °C. Large ion lithophile elements (LILE) are only moderately depleted in the samples that have the lowest U, Th and LREE contents, indicating that phengite retains some LILE in the residue. Some restites display an increase in Nb/Ta with respect to the protolith. This further suggests the presence of phengite, which, in contrast to rutile, preferentially incorporates Nb over Ta. The trace element fractionation observed during UHP anatexis in the Kokchetav gneisses is significantly different from depletions reported in low-pressure restites, where generally no LREE and Th depletion occurs. Melting at UHP conditions resulted in an increase in the Sm/Nd ratio and a decoupling of the Sm–Nd and Lu–Hf systems in the restite. Further subduction of such restites and mixing with mantle rocks might thus lead to a distinct isotopic reservoir different from the bulk continental crust.

Journal ArticleDOI
TL;DR: The Kottavattom quarry in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks.
Abstract: The quarry at Kottavattom in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks. Garnet-biotite gneiss has undergone a change in mineral assemblage to form submetre scale orthopyroxene-bearing patches, later retrogressed to form an amphibole-bearing lithology. These patches, often referred to as arrested or incipient charnockite, crosscut the original metamorphic foliation and are typically attributed to passage of a low aH2O fluid through the rock. Whilst this conversion is recognised as a late stage process, little detailed chronological work exists to link it temporally to metamorphism in the region. Zircon and monazite analysed from Kottavattom not only record metamorphism in the Trivandrum Block but also show internal, lobate textures crosscutting the original zoning, consistent with fluid-aided coupled dissolution-reprecipitation during formation of the orthopyroxene-bearing patches. High-grade metamorphism at the quarry occurred between the formation of metamorphic monazite at ~585 Ma and the growth of metamorphic zircon at ~523 Ma. The fluid-assisted alteration of the garnet-biotite gneiss is poorly recorded by altered zircon with only minimal resetting of the U–Pb system, whereas monazite has in some cases undergone complete U–Pb resetting and records an age for fluid infiltration at ~495 Ma. The fluid event therefore places the formation of the altered patches at least 25 Myr after the zircon crystallisation in the garnet-biotite gneiss. The most likely fluid composition causing the modification and U–Pb resetting of zircon and monazite is locally derived hypersaline brine.

Journal ArticleDOI
TL;DR: In this paper, groundmass perovskite has been dated by LA-MC-ICPMS in 135 kimberlites and related rocks from 110 localities across southern Africa.
Abstract: Groundmass perovskite has been dated by LA-ICPMS in 135 kimberlites and related rocks from 110 localities across southern Africa. Sr and/or Nd isotopes have been analysed by LA-MC-ICPMS in a subset of these and integrated with published data. The age distribution shows peaks at 1,600–1,800, 1,000–1,200, 500–800 and 50–130 Ma. The major “bloom” of Group I kimberlites at ca 90 ± 10 Ma was preceded by a slow build-up in magmatic activity from ca 180 Ma. The main pulse of Group II kimberlites at 120–130 Ma was a distinct episode within this build-up. Comparison of the isotopic data with seismic tomography images suggests that metasomatized subcontinental lithospheric mantle (SCLM) with very low e Nd and high 87Sr/86Sr, (the isotopic signature of Group II kimberlites) was focused in low-Vs zones along translithospheric structures. Such metasomatized zones existed as early as 1,800 Ma, but were only sporadically tapped until the magmatic build-up began at ca 180 Ma, and contributed little to the kimberlitic magmas after ca 110 Ma. We suggest that these metasomatized volumes resided in the deep SCLM and that their low-melting point components were “burned off” by rising temperatures, presumably during an asthenospheric upwelling that led to SCLM thinning and a rise in the ambient geotherm between 120 and 90 Ma. The younger Group I kimberlites therefore rarely interacted with such SCLM, but had improved access to shallower volumes of differently metasomatized, ancient SCLM with low 87Sr/86Sr and intermediate e Nd (0–5). The kimberlite compositions therefore reflect the evolution of the SCLM of southern Africa, with metasomatic-enrichment events from as early as 1.8 Ga, through a major thermal and compositional change at ca 110 Ma, and the major kimberlite “bloom” around 90 Ma.

Journal ArticleDOI
TL;DR: In this paper, microstructures in Permian inclusion-bearing metapegmatite garnets from the Koralpe (Eastern Alps, Austria) reveal re-equilibration by coarsening of abundant submicron-sized inclusions at the site of healed brittle cracks.
Abstract: Microstructures in Permian inclusion-bearing metapegmatite garnets from the Koralpe (Eastern Alps, Austria) reveal re-equilibration by coarsening of abundant submicron-sized inclusions (1 μm–2 nm diameter) at the site of healed brittle cracks. The microstructures developed during Cretaceous eclogite-facies deformation and the related overprinting of the host–inclusion system. Trails of coarsened inclusions (1–10 μm diameter) crosscut the garnet, defining traces of former fractures with occasional en-echelon overlaps. Trails are flanked by 10- to 100-μm-wide ‘bleaching zones’ characterized by the absence of ≤1-μm-sized inclusions in optical and SE images. FEG-microprobe data show that trails and bleaching zones can form isochemically, although some trails exhibit non-isochemical coarsening. Cross-correlation-based EBSD analysis reveals garnet lattice rotation of up to 0.45°, spatially correlated with bleaching zones. The garnet lattice in the center of trails is misoriented around different axes with respect to the lattice either side of the trail. Elevated dislocation density within bleaching zones is confirmed by TEM observations. Dislocations represent a plastic wake formed by crystal plastic deformation at the crack tip. Fracture enhanced diffusion rates in the lattice adjacent to crack planes by introducing dislocations, priming these areas to behave differently to the bulk of the garnet during Cretaceous metamorphism and facilitating localized coarsening of inclusions. Diffusion within the bleaching zone was enhanced by a minimum factor of 102. The partially closed host–inclusion system records the influence of deformation mechanisms on re-equilibration and contributes to understanding of the interaction between deformation and chemical reaction during metamorphism.

Journal ArticleDOI
TL;DR: In this article, the authors investigated experimentally the dolomitization of a fractured calcite marble under flow-through conditions at mild hydrothermal conditions, where grain boundaries acted as microreactors.
Abstract: Limestone dolomitization is an example of a fluid-induced mineralogical transformation that commonly affects extensive rock volumes. To understand the mechanisms enabling these efficient replacement reactions, we investigated experimentally the dolomitization of a fractured calcite marble under flow-through conditions at mild hydrothermal conditions. Contrary to most earlier studies of coupled dissolution reprecipitation reactions that were conducted using small, individual grains, in this study, the integrity of the rock was preserved, so that the experiment explored the links between flow in a fracture and fluid–rock interaction. In these experiments, grain boundaries acted as microreactors, in which a Mg-poor ‘protodolomite’ formed initially, and then transformed into dolomite. The difficulty in nucleating dolomite played a key role in controlling the evolution of the porosity, by allowing for (1) initial dissolution along grain boundaries, and (2) formation of coarse porosity at the reaction interface. This porosity evolution not only enabled the reaction to progress efficiently, but also controlled the mineralogy of the system, as shown by brucite replacing calcite near the fracture once the fluid along calcite grain boundaries became sufficiently connected to the fluid flowing through the fracture. This study illustrates the role of grain boundaries, porosity evolution and nucleation in controlling reaction progress as well as the nature and textures of the products in pervasive mineralogical transformations.

Journal ArticleDOI
TL;DR: In this paper, a series of liquidus determinations is reported for a primitive arc basalt from Grenada, Lesser Antilles, at anhydrous, H2O-understandingsaturated and H 2O-saturated conditions in the pressure range 1 atm to 1.7 GPa.
Abstract: A series of liquidus determinations is reported for a primitive arc basalt (15.4 wt % MgO, 45.5 wt % SiO2) from Grenada, Lesser Antilles, at anhydrous, H2O-undersaturated and H2O-saturated conditions in the pressure range 1 atm to 1.7 GPa. \(\hbox{Fe}^{3+}/\Upsigma\hbox{Fe}\) of high-pressure experimental glasses as measured by μXANES ranges from 0.44 to 0.86, corresponding to oxygen fugacities (fO2) between 3.2 and 7.8 log units above the nickel–nickel oxide redox buffer (NNO). 1-atm experiments conducted from NNO − 2.5 to + 3.8 show that increasing fO2 mainly increases the forsterite content (Fo) of olivine and has little effect on phase relations. The crystallisation sequence at lower crustal pressures for all water contents is forsteritic olivine + Cr-rich spinel followed by clinopyroxene. The anhydrous liquidus is depressed by 100 and 120 °C in the presence of 2.9 and 3.8 wt % H2O, respectively. H2O-undersaturated experiments at NNO + 3.2 to + 4.5 produce olivine of equivalent composition to the most primitive olivine phenocrysts in Grenadan picrites (Fo91.4). We conclude that direct mantle melts originating beneath Grenada could be as oxidised as ~NNO + 3, consistent with the uppermost estimates from olivine–spinel oxybarometry of high Mg basalts. μXANES analyses of olivine-bearing experimental glasses are used to develop a semi-empirical oxybarometer based on the value of \({{K}_{D}}_{\rm ol-melt}^{\rm Fe-Mg}\) when all Fe is assumed to be in the Fe2+ state (\({K}_{D}^{{\rm Fe}_T}\)). The oxybarometer is tested on an independent data set and is able to reproduce experimental fO2 to ≤1.2 log units. Experiments also show that the geochemically and petrographically distinct M- and C-series lavas on the island can be produced from hydrous melting of a common picritic source. Low pressures expand the olivine stability field at the expense of clinopyroxene, enriching an evolving melt in CaO and forcing differentiation to take place along a C-series liquid line of descent. Higher pressure conditions allow early and abundant clinopyroxene crystallisation, rapidly depleting the melt in both CaO and MgO, and thus creating the M-series.

Journal ArticleDOI
TL;DR: In this paper, the authors used cathodoluminescence (CL) to reveal internal structures in several diamonds from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions.
Abstract: Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ −25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (−5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.

Journal ArticleDOI
TL;DR: The Carpenter Ridge Tuff (CRT) as discussed by the authors is one of the largest known strongly zoned ash-flow tuffs with high Rb/Sr, low Ba, Zr, Eu, and positive Eu anomalies.
Abstract: The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe–Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51–53 wt% SiO2) with Ba contents to 4,000–5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4–5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that partly masks the in situ differentiation process. The CRT provides a particularly clear perspective on processes of in situ crystal-liquid separation into a lower crystal-rich zone and an upper eruptible cap, which appears common in incrementally built upper-crustal magma reservoirs of high-flux magmatic provinces.

Journal ArticleDOI
TL;DR: In this article, the authors present a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars.
Abstract: Constraining the pressure of crystallization of magmas is an important but elusive task. In this work, we present a method to derive crystallization pressures for rocks that preserve glass compositions (either glass inclusions or matrix glass) representative of equilibration between melt, quartz, and 1 or 2 feldspars. The method relies on the well-known shift of the quartz–feldspar saturation surface toward higher normative quartz melt compositions with decreasing pressure. The critical realization for development of the method is the fact that melt, quartz and feldspars need to be in equilibrium at the liquidus for the melt composition. The method thus consists of calculating the saturation surfaces for quartz and feldspars using rhyolite-MELTS over a range of pressures, and searching for the pressure at which the expected assemblage (quartz+1 feldspar or quartz+2 feldspars) is found at the liquidus. We evaluate errors resulting from uncertainties in glass composition using a series of Monte Carlo simulations for a quartz-hosted glass inclusion composition from the Bishop Tuff, which reveal errors on the order of 20–45 MPa for the quartz+2 feldspars constraint and on the order of 25–100 MPa for the quartz+1 feldspar constraint; we suggest actual errors are closer to the lower bounds of these ranges. We investigate the effect of fluid saturation in two ways: (1) By applying our procedure over a range of water contents for three glass compositions; we show that the effect of fluid saturation is more important at higher pressures (~300 MPa) than at lower pressures (~100 MPa), but reasonable pressure estimates can be derived irrespective of fluid saturation for geologically relevant H2O concentrations >3 wt% and (2) by performing the same type of pressure determinations with a preliminary version of rhyolite-MELTS that includes a H2O–CO2 mixed fluid phase; we use a range of H2O and CO2 concentrations for two compositions characteristic of early-erupted and late-erupted Bishop Tuff glass inclusions and demonstrate that calculated pressures are largely independent of CO2 concentration (for CO2 <1,000 ppm), at least for relatively high H2O contents, as expected in most natural magmas, such that CO2 concentration can be effectively neglected for application of our method. Finally, we demonstrate that pressures calculated using the rhyolite-MELTS geobarometer compare well with those resulting from H2O–CO2 glass inclusion barometry and Al-in-hornblende barometry for an array of natural systems for which data have been compiled from the literature; the agreement is best for quartz-hosted glass inclusions, while matrix glass yields systematically lower rhyolite-MELTS pressures, suggestive of melt evolution during eruptive decompression.

Journal ArticleDOI
TL;DR: In this article, small-scale modeling of zircon dissolution and re-precipitation in a static magma generates sub-mm melt domains having variable Zr content and Hf isotope composition.
Abstract: directly transfer to their magmatic overgrowths. Smallscale modeling of zircon dissolution and re-precipitation in a static magma generates sub-mm melt domains having variable Zr content and Hf isotope composition. The composition of these domains is controlled by the size and isotope composition of the nearest dissolving zircon crystals and the cooling rate of the magma. These results suggest that in magma systems with a substantial inherited zircon load, zircon crystals within the same rock should record variable 176 Hf/ 177 Hf in the magmatic zircon fraction.

Journal ArticleDOI
TL;DR: In this article, the authors used petrogenetic grids, pseudosection calculations, and reaction histories constrained by textural evidence to determine that the migmatites in the High Himalayan Crystallines (HHCs) of Sikkim attained peak P-T conditions of 750-800°C, 9-12kbar, followed by steep isothermal decompression to 3-5kbar and then isobaric cooling to ~600°C.
Abstract: The High Himalayan Crystallines (HHCs) provide an excellent natural laboratory to study processes related to crustal melting, crustal differentiation, and the tectonic evolution of mountain belts because partial melting in these rocks occurred under well-defined tectonic boundary conditions (N–S collision of the Indian and the Eurasian plates) and the rocks have not been modified by subsequent metamorphic overprinting. We have used petrogenetic grids, kinetically constrained individual thermobarometry, pseudosection calculations, and reaction histories constrained by textural evidence to determine that the migmatites in the HHC of Sikkim attained peak P–T conditions of 750–800 °C, 9–12 kbar, followed by steep isothermal decompression to 3–5 kbar, and then isobaric cooling to ~600 °C. There may be a trend where rocks to the north [closer to the South Tibetan detachment system (STDS)] attained somewhat higher maximum pressures. The decompression may have been triggered by a reduction in density due to the production of melt (~20 vol%); minor amounts of additional melt may have been produced in individual packages of rock during decompression itself, depending on the exact geometry of the P–T path and the bulk composition of the rock. The stalling of rapid, isothermal exhumation at depths of 10–18 km (3–5 kbar) is related to metamorphic reactions that occur in these rocks. Geospeedometry indicates that at least a two-stage cooling history is required to describe the compositional zoning in all garnets. Both of these stages are rapid (several 100’s °C/my between 800 and 600 °C, followed by several 10’s °C/my between 600 and 500 °C), but there appears to be a spatial discontinuity in cooling history: Rocks to the south (closer to main central thrust) cooled more slowly than rocks to the north (closer to STDS). The boundary between these domains coincides with the discontinuity in age found in the same area by Rubatto et al. (Contrib Mineral Petrol 165:349–372, 2013). Combined with the information on petrologic phase relations, the data reveal the remarkable aspect that the rapid cooling and change of cooling rates all occurred after, rather than during, the rapid exhumation. This result underscores that high-temperature (e.g., >550 °C) cooling is a result of several processes in addition to exhumation and a one-to-one correlation of cooling and exhumation may sometimes be misplaced. Moreover, average cooling rates inferred from the closure temperatures of two isotopic systems should be interpreted judiciously in such nonlinearly cooling systems. While many aspects (e.g., isothermal decompression, isobaric cooling, duration of metamorphism, and cooling rates) of the pressure–temperature history inferred by us are consistent with the predictions of thermomechanical models that produce midcrustal channel flow, the occurrence of blocks with two different cooling histories within the HHC is not explained by currently available models. It is found that while exhumation may be initiated by surface processes such as erosion, the course of exhumation and its rate, at least below depths of ~15 km, is mostly controlled by a coupling between mechanical (density gain/loss) and chemical (metamorphic reactions) processes at depth.

Journal ArticleDOI
TL;DR: In this paper, a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion, Scotland, is presented, which is a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite.
Abstract: We present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion, Scotland. Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the ‘major wavy horizon’). Higher in the stratigraphy is another, similar, horizon (the ‘minor wavy horizon’) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite to equigranular crystals in gabbro and to oikocrysts in poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt% Cr2O3) anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt% Cr2O3) and REE-poor to -moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A second partial melting event stripped out almost all clinopyroxene from the lowest allivalite to form a troctolite, with the major wavy horizon marking the extent of melting during this episode. The poikilitic gabbro formed from clinopyroxene-saturated melt moving upwards and laterally through the remobilized cumulate pile and precipitating clinopyroxene en route. This process, called reactive liquid flow, is potentially important in open magma chambers.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Hf isotope composition of zircon from the Bushveld Complex to better understand the source of its parent magmas, and found that the parent MAGMA had a Hf composition unlike that of the depleted mantle at 2.06 Ga.
Abstract: We use the Hf isotope composition of zircon from the Bushveld Complex to better understand the source of its parent magmas. The data set, which consists of 141 individual LA-ICP-MS analyses from 11 samples encompassing the entire cumulate stratigraphy, shows that the parent magmas had a Hf isotope composition unlike that of the depleted mantle at 2.06 Ga. Specifically, sample average eHf(present) values range from −55.3 to −52.5 (eHf(2.06 Ga) = −9.0 to −6.8) and are surprisingly homogeneous. This homogeneity is difficult to reconcile with direct assimilation of crustal material by Bushveld parent magmas because it would require that each batch of magma had assimilated just the right amount of material to all acquire the same Hf isotopic composition. Also, calculations suggest that simple mixing of regional crust into a primitive, mantle-derived liquid cannot account for both the presumed Hf and major elemental concentrations and the 176Hf/177Hf ratio of the Bushveld magmas. Rather, the Hf data are consistent with generation of these magmas by partial melting in a sub-continental mantle lithospheric source with an unradiogenic Hf isotopic composition equal to that of the Bushveld parent magmas. Several possibilities for the development of such a source are explored using the new Hf isotope data.

Journal ArticleDOI
TL;DR: In this article, a new model was developed to calculate the fO2 for a peridotite at a given P, T, and Fe3+/Fe2+ values.
Abstract: Current models for the formation of natural diamond involve either oxidation of a methane-bearing fluid by reaction with oxidized mantle, or reduction of a carbonate-bearing fluid (or melt) by reaction with reduced mantle. Implicit in both models is the ability of the mantle with which the fluid equilibrates to act as an oxidizing or reducing agent, or more simply, to act as a source or sink of O2. If only redox reactions involving iron are operating, the ability of mantle peridotite to fulfill this role in diamond formation may not be sufficient for either model to be viable. Using the recent experimental recalibration of olivine–orthopyroxene–garnet oxybarometers of Stagno et al. (2013), we re-evaluated the global database of ~200 garnet peridotite samples for which the requisite Fe3+/Fe2+ data for garnet exist. Relative to the previous calibration of Gudmundsson and Wood (1995), the new calibration yields somewhat more oxidized values of Δlog fO2 (FMQ), with the divergence increasing from 60 mol%), with CH4 being the next most abundant species. To ascertain the capacity for mantle peridotite to act as a source or sink of O2, we developed a new model to calculate the fO2 for a peridotite at a given P, T, and Fe3+/Fe2+. The results from this model predict 50 ppm or less O2 is required to shift a depleted mantle peridotite the observed four log units of fO2. Coupled with the observed distribution of samples at values of fO2 intermediate between the most reduced (metal-saturated) and most oxidized (carbonate-saturated) possible values for diamond stability, these results demonstrate that peridotites are very poor sinks or sources of O2 for possible redox reactions to form diamond. A corollary of the poor redox buffering capacity of cratonic peridotites is that they can be employed as faithful indicators of the redox state of the last metasomatic fluid that passed through them. We propose that diamond formation from CHO fluids is a predictable consequence either of isobaric cooling or of combined cooling and decompression of the fluid as it migrates upward in the lithosphere. This establishes a petrological basis for the observed close connection between subcalcic garnet and diamond: based on high solidus temperatures of harzburgite and dunite effectively precluding dilution of CHO fluids through incipient melts, such highly depleted cratonic peridotites are the preferred locus of diamond formation. Due to a rapid increase in solidus temperature with increasing CH4 content of the fluid, diamond formation related to reduced CHO fluids may also occur in some cratonic lherzolites.

Journal ArticleDOI
TL;DR: In this paper, the East Orebody of the Bayan Obo REE-Nb-Fe deposit is presented, with mineral compositions, textures, 232Th-208Pb SHRIMP ages and petrological context.
Abstract: Extremely U-depleted (<1 ppm) zircons from H8 banded ores in the East Orebody of the Bayan Obo REE–Nb–Fe deposit are presented, with mineral compositions, textures, 232Th–208Pb SHRIMP ages and petrological context. Cores of East Orebody zircon contain up to 7 wt% HfO2 and are zoned, depicting bipyramidal crystal forms. A distinct generation of patchy, epitaxial rim zircon, similarly depleted in U, is intergrown with rare earth ore minerals (bastnasite, parisite, monazite). Overprinting aegirine textures indicate paragenetically late, reactive Na-rich fluids. Chondrite-normalized REE patterns without Eu anomalies match closely with those from the Mud Tank and Kovdor carbonatitic zircons. Increased HREE in rims ((Lu/Gd)N 43–112) relative to cores ((Lu/Gd)N 6–7.5) and the localized presence of xenotime are attributable to reactive, mineralizing fluid compositions enriched in Y, REE and P. Cathodoluminescence further reveals HREE fractionation in rims, evidenced by a narrow-band Er3+ emission at 405 nm. The extreme depletion of U in core and rim zircon is characteristic for this mineral deposit and is indicative of a persistent common source. U depletion is also a characteristic for zircons from carbonatitic or kimberlitic systems. 232Th–208Pb (SHRIMP II) geochronological data reveal the age of zircon cores as 1,325 ± 60 Ma and a rim-alteration event as 455.6 ± 28.27 Ma. The combined findings are consistent with a protolithic igneous origin for zircon cores, from a period of intrusive, alkaline–carbonatitic magmatism. Fluid processes responsible for the REE–Nb mineralizations affected zircon rim growth and degradation during the widely reported Caledonian events, providing a new example in a localized context of HREE enrichment processes.

Journal ArticleDOI
TL;DR: In this article, the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotsite compositions (ACP: alkali-rich peridotoite+ 5.0 wt% CO2 and PERC: fertile peridtoite+ 2.5 wt
Abstract: We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10–20 GPa and 1,500–2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10–20 GPa, near-solidus (ACP: 1,400–1,630 °C) carbonatitic melts with 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10–20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the zone of metal saturation, CO2 and H2O flux melting can take place and kimberlite parental magmas can be generated. These mechanisms might be important for mantle dynamics and are potentially effective metasomatic processes in the deep mantle.

Journal ArticleDOI
TL;DR: In this paper, an integrated investigation of in situ zircon U-Pb dating and Hf-O isotopes, in combination with whole-rock major and trace elements, as well as Sr-Nd-Hf isotope, for the Fushui intrusive complex is provided.
Abstract: Potassium (K)-rich mafic rocks are viewed as being derived from partial melting of an enriched mantle source, but it is controversial about which processes cause the mantle enrichment. The Fushui intrusive complex is the largest early Paleozoic K-rich intrusive complex in the eastern Qinling orogen. Therefore, detailed studies on the Fushui complex can contribute not only to understanding of the petrogenesis of K-rich mafic rocks, but also to unraveling the Paleozoic evolution of the Qinling orogen. In this study, we provide an integrated investigation of in situ zircon U–Pb dating and Hf–O isotopes, in combination with whole-rock major and trace elements, as well as Sr–Nd–Hf isotopes, for the Fushui intrusive complex. In situ zircon secondary ion mass spectrometry (SIMS) / laser ablation induction coupled plasma mass spectrometry (LA-ICPMS) U–Pb dating reveals that different rock types of the Fushui complex have identical formation ages of 488–484 Ma. The Fushui complex belongs to the shoshonitic series, and is characterized by extreme large ion lithophile element (LILE, e.g., Ba, U, Th and Sr) and Pb enrichment and depletion of high field-strength elements (HFSEs, e.g. Nb, Ta, Zr, Hf, P and Ti). It shows high initial Sr isotopic ratios (0.7100–0.7151), negative whole-rock e Nd(t) (−3.97 to −5.68) and negative to slight positive whole-rock (−2.24 to 2.38) and zircon (−2.85 to 0.34) e Hf(t) values, as well as high zircon δ18O values (6.86 ± 0.13 ‰). The Hf–Nd isotopic systems are decoupled with positive Δe Hf values (3.85–5.37). These geochemical features indicate that the mantle source has incorporated subducted zircon–barren oceanic sediments. A simple two-end-members mixing model constrains the amount of subducted sediments in the Fushui mantle source to 5–8 %. The Fushui complex originated from 1 to 6 % equilibrium melting of a phlogopite-bearing garnet lherzolite by non-modal melting. As shoshonitic magmas have been discovered in modern nascent arcs, we suggest that the generation of the Fushui complex was induced by the subduction of the Paleotethyan Ocean, when it jumped from the northern to the southern boundary of the North Qinling microcontinent.

Journal ArticleDOI
TL;DR: Spinel facies dunite, harzburgite, lherzolite and wehrlite mantle xenoliths from a cluster of Miocene volcanoes in southern New Zealand preserve evidence of the complex evolution of the underlying continental mantle lithosphere as mentioned in this paper.
Abstract: Spinel facies dunite, harzburgite, lherzolite and wehrlite mantle xenoliths from a cluster of Miocene volcanoes in southern New Zealand preserve evidence of the complex evolution of the underlying continental mantle lithosphere. Spinel Cr# records melt extraction with some values indicative of near complete removal of clinopyroxene. LREE-enriched, low Ti/Eu and low Al2O3 clinopyroxene and rare F-, LREE-rich apatite indicates subsequent interaction between peridotite and a metasomatising carbonatitic melt. The clearest metasomatic signature occurs in the formerly highly depleted samples because there was little or no pre-existing clinopyroxene to dilute the carbonatite signature. For the same reason, the isotopic character of the metasomatising agent is best observed in the formerly highly depleted peridotites (87Sr/86Sr = 0.7028–0.7031; 143Nd/144Nd = 0.5129; 206Pb/204Pb = 20.2–20.3). These isotope ratios are very close to, but slightly less radiogenic than, the HIMU end-member mantle reservoir. Nd isotope data imply carbonatite metasomatism occurred within the last several hundred million years, with ubiquitous pyroxene core-to-rim Al diffusion zoning indicating that it must pre-date cooling of the lithospheric mantle following Late Cretaceous–Eocene rifting of Zealandia from Gondwana. Metasomatism was significantly younger than ancient Re-depletion ages of ~2 Ga and shows that decoupling of peridotite isotope systems has occurred.

Journal ArticleDOI
TL;DR: The authors used a set of hydrothermal experiments on the Late-erupted Bishop Tuff (LBT) magma to evaluate the rhyolite-MELTS thermodynamic model, a modified calibration of the original MELTS model optimized for crystallization of silicicic magmas.
Abstract: Thermodynamic models are vital tools to evaluate magma crystallization and storage conditions. Before their results can be used independently, however, they must be verified with controlled experimental data. Here, we use a set of hydrothermal experiments on the Late-erupted Bishop Tuff (LBT) magma to evaluate the rhyolite-MELTS thermodynamic model, a modified calibration of the original MELTS model optimized for crystallization of silicic magmas. Experimental results that are well captured by rhyolite-MELTS include a relatively narrow temperature range separating the crystallization of the first felsic mineral and the onset of the ternary minimum (quartz plus two feldspars), and extensive crystallization over a narrow temperature range once the ternary minimum is reached. The model overestimates temperatures by ~40 °C, a known limitation of rhyolite-MELTS. At pressures below 110 MPa, model and experiments differ in the first felsic phase, suggesting that caution should be exercised when applying the model to very low pressures. Our results indicate that for quartz, sanidine, plagioclase, magnetite, and ilmenite to crystallize in equilibrium from LBT magma, magma must have been stored at ≤740 °C, even when a substantial amount of CO2 occurs in the coexisting fluid. Such temperatures are in conflict with the hotter temperatures retrieved from magnetite–ilmenite compositions (~785 °C for the sample used in the experiments). Consistent with other recent studies, we suggest that the Fe–Ti oxide phases in the Late Bishop Tuff magma body are not in equilibrium with the other minerals and thus the retrieved temperature and oxygen fugacity do not reflect pre-eruptive storage conditions.