scispace - formally typeset
Search or ask a question

Showing papers in "Current Pharmaceutical Design in 2007"


Journal ArticleDOI
TL;DR: ACE inhibitory peptides may have the ability to lower BP in vivo by limiting the vasoconstrictory effects of Ang II and by potentiating the vasodilatory effects of BK.
Abstract: Food proteins contain latent biofunctional peptide sequences within their primary structures which may have the ability to exert a physiological response in vivo. A large range of biofunctional peptides have been isolated from food proteins including opioid, immunomodulatory, antimicrobial, mineral binding, growth and muscle stimulating, anti-cancer, proteinase and angiotensin converting enzyme (ACE, EC 3.4.15.1) inhibitory peptides. The biofunctional peptide activity currently most studied in food proteins appears to be those that inhibit ACE. ACE plays a central role in the regulation of blood pressure (BP) through the production of the potent vasoconstrictor, angiotensin (Ang) II , and the degradation of the vasodilator, bradykinin (BK). ACE inhibitory peptides may therefore have the ability to lower BP in vivo by limiting the vasoconstrictory effects of Ang II and by potentiating the vasodilatory effects of BK. These ACE inhibitory peptides can be enzymatically released from intact proteins in vitro and in vivo during food processing and gastrointestinal digestion, respectively. ACE inhibitory peptides may be generated in or incorporated into functional foods in the development of 'natural' beneficial health products. Several products are currently on the market or are in development that contain peptide sequences which have ACE inhibitory properties. Detailed human studies are required in order to demonstrate the efficacy of these bioactive peptides prior to their widespread utilisation as physiologically beneficial functional foods/food ingredients.

431 citations


Journal ArticleDOI
TL;DR: The current view on cathepsins as an emerging group of targets for several diseases and the development ofCathepsin K and S inhibitors for treatment of osteoporosis and various immune disorders are discussed.
Abstract: The general view on cysteine cathepsins, which were long believed to be primarily involved in intracellular protein turnover, has dramatically changed in last 10 to 15 years. The discovery of new cathepsins, such as cathepsins K, V, X, F and O, and their tissue distribution suggested that at least some of them are involved in very specific cellular processes. Moreover, gene ablation experiments revealed that cathepsins play a vital role in numerous physiological processes, such as antigen processing and presentation, bone remodelling, prohormone processing and wound healing. Their involvement in several pathologies, including osteoporosis, rheumatoid arthritis, osteoarthritis, bronchial asthma and cancer have also been confirmed and today several of them have been validated as relevant targets for therapies. Compounds targeting cathepsins S and K are already in clinical evaluation, whereas others are in experimental phases. The cathepsin K inhibitor AAE-581 (balicatib) as the most advanced of them passed Phase II clinical trials in 2005. In this review, we discuss the current view on cathepsins as an emerging group of targets for several diseases and the development of cathepsin K and S inhibitors for treatment of osteoporosis and various immune disorders.

410 citations


Journal ArticleDOI
TL;DR: This critical review re-examines the strategy and the output of the modern QSAR modeling approaches and provides examples and arguments suggesting that current methodologies may afford robust and validated models capable of accurate prediction of compound properties for molecules not included in the training sets.
Abstract: Quantitative Structure Activity Relationship (QSAR) modeling has been traditionally applied as an evaluative approach, i.e., with the focus on developing retrospective and explanatory models of existing data. Model extrapolation was considered if only in hypothetical sense in terms of potential modifications of known biologically active chemicals that could improve compounds' activity. This critical review re-examines the strategy and the output of the modern QSAR modeling approaches. We provide examples and arguments suggesting that current methodologies may afford robust and validated models capable of accurate prediction of compound properties for molecules not included in the training sets. We discuss a data-analytical modeling workflow developed in our laboratory that incorporates modules for combinatorial QSAR model development (i.e., using all possible binary combinations of available descriptor sets and statistical data modeling techniques), rigorous model validation, and virtual screening of available chemical databases to identify novel biologically active compounds. Our approach places particular emphasis on model validation as well as the need to define model applicability domains in the chemistry space. We present examples of studies where the application of rigorously validated QSAR models to virtual screening identified computational hits that were confirmed by subsequent experimental investigations. The emerging focus of QSAR modeling on target property forecasting brings it forward as predictive, as opposed to evaluative, modeling approach.

369 citations


Journal ArticleDOI
TL;DR: In this paper, incidence, predisposition, mechanism, and prevention of aminoglycoside-induced ototoxicity is discussed in the light of literature data.
Abstract: It has long been known that the major irreversible toxicity of aminoglycosides is ototoxicity. Among them, streptomycin and gentamicin are primarily vestibulotoxic, whereas amikacin, neomycin, dihydrosterptomycin, and kanamicin are primarily cochleotoxic. Cochlear damage can produce permanent hearing loss, and damage to the vestibular apparatus results in dizziness, ataxia, and/or nystagmus. Aminoglycosides appear to generate free radicals within the inner ear, with subsequent permanent damage to sensory cells and neurons, resulting in permanent hearing loss. Two mutations in the mitochondrial 12S ribosomal RNA gene have been previously reported to predispose carriers to aminoglycoside-induced ototoxicity. As aminoglycosides are indispensable agents both in the treatment of infections and Meniere's disease, a great effort has been made to develop strategies to prevent aminoglycoside ototoxicity. Anti-free radical agents, such as salicylate, have been shown to attenuate the ototoxic effects of aminoglycosides. In this paper, incidence, predisposition, mechanism, and prevention of aminoglycoside-induced ototoxicity is discussed in the light of literature data.

358 citations


Journal ArticleDOI
TL;DR: This review will focus on the IGF-I receptor structure and function, its intracellular signaling pathways, and some important implications of the activation of the IGF -I signal transduction system in specific tissues.
Abstract: The insulin-like growth factor (IGF)-I is implicated in the regulation of protein turnover and exerts potent mitogenic and differentiating effects on most cell types. IGF-I biological actions are mediated by the IGF-I receptor, comprised of two extra-cellular alpha-subunits, containing hormone binding sites, and two membrane-spanning beta-subunits, encoding an intracellular tyrosine kinase. Hormone binding activates the receptor kinase, leading to receptor autophosphorylation and tyrosine phosphorylation of multiple substrates, including the IRS and Shc proteins. Through these initial tyrosine phosphorylation reactions, IGF-I signals are transduced to a complex network of intracellular lipid and serine/threonine kinases that are ultimately responsible for cell proliferation, modulation of tissue differentiation, and protection from apoptosis. This review will focus on the IGF-I receptor structure and function, its intracellular signaling pathways, and some important implications of the activation of the IGF-I signal transduction system in specific tissues.

287 citations


Journal ArticleDOI
TL;DR: The necessary characteristics of an effective ( 64)Cu chelator are discussed, while highlighting the development and evaluation of (64)Cu-complexes attached to biologically-targeted ligands.
Abstract: Molecular imaging is an important scientific discipline that plays a major role in clinical medicine and pharmaceutical development. While several imaging modalities including X-ray computed tomography (CT) and magnetic resonance imaging (MRI) generate high-resolution anatomical images, positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer insight into the physiological processes that occur within a living organism. Of these two nuclear medicine imaging techniques, PET has advantages with respect to sensitivity and resolution, and this has led to the production and development of many positron emitting radionuclides that include non-traditional radionuclides of the transition metals. Copper-64 (t(1/2) = 12.7 h, beta(+): 17.4%, E(beta+max) = 656 keV; beta(-): 39%, E(beta-max) = 573 keV) has emerged as an important positron emitting radionuclide that has the potential for use in diagnostic imaging and radiotherapy. However, (64)Cu must be delivered to the living system as a stable complex that is attached to a biological targeting molecule for effective imaging and therapy. Therefore, significant research has been devoted to the development of ligands that can stably chelate (64)Cu. This review discusses the necessary characteristics of an effective (64)Cu chelator, while highlighting the development and evaluation of (64)Cu-complexes attached to biologically-targeted ligands.

273 citations


Journal ArticleDOI
TL;DR: The concept that hyperinsulinemia, associated with insulin resistance and obesity, should be treated by changes in life style and/or pharmachological approaches to avoid an increased risk for cancer is underline.
Abstract: This review will focus on the emerging role of the insulin receptor (IR) in cancer. Several epidemiological studies have shown that insulin resistance states, characterized by hyperinsulinemia, are associated with an increased risk for a number of malignancies, including carcinomas of the breast, prostate, colon and kidney. Recent data have elucidated some molecular mechanisms by which IR is involved in cancer. First, IR is overexpressed in several human malignancies. Interestingly, one of the two IR isoform (IR-A) is especially overexpressed in cancer. IR-A is the IR fetal isoform and has the peculiar characteristic to bind not only insulin but also IGF-II. Second, IR forms hybrid receptors with the homologous IGF-IR, which is also commonly overexpressed in cancer. These hybrid receptors containing IR-A hemidimers have broad binding specificity as they bind IGF-I and also IGF-II and insulin. By binding to hybrid receptors, insulin may stimulate specific IGF-IR signaling pathways. Overexpression of IR-A is, therefore, a major mechanism of IGF system overactivation in cancer. These findings may have important implications for both the prevention and treatment of common human malignancies. They underline the concept that hyperinsulinemia, associated with insulin resistance and obesity, should be treated by changes in life style and/or pharmachological approaches to avoid an increased risk for cancer. IR-A isoform and hybrid receptors should be regarded, therefore, as potential molecular targets for novel anti-cancer therapies.

251 citations


Journal ArticleDOI
TL;DR: Heparanase upregulation correlates with increased tumor vascularity and poor postoperative survival of cancer patients, and the unexpected identification of a single functional heparanase is suggested that the enzyme is a promising target for anti-cancer and anti-inflammatory drug development.
Abstract: Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic response in vivo. Heparanase upregulation correlates with increased tumor vascularity and poor postoperative survival of cancer patients. Heparanase is synthesized as a 65 kDa inactive precursor that undergoes proteolytic cleavage, yielding 8 kDa and 50 kDa protein subunits that heterodimerize to form an active enzyme. Heparanase exhibits also non-enzymatic activities, independent of its involvement in ECM degradation. Among these, are the enhancement of Akt signaling, stimulation of PI3K- and p38-dependent endothelial cell migration, and up regulation of VEGF, all contributing to its potent pro-angiogenic activity. Studies on relationships between structure and heparanase inhibition activity of nonanticogulant heparins systematically differing in their O-sulfation patterns, degrees of N-acetylation, and glycol-splitting of both pre-existing nonsulfated uronic acid residues (prevalently D-glucuronic) and/or those (Liduronic acid/L-galacturonic acid) generated by graded 2-O-desulfation, have permitted to select effective inhibitors of the enzymatic activity of heparanase. N-acetylated, glycol-split heparins emerged as especially strong inhibitors of heparanase, exerting little or no release of growth factors from ECM. N-acetylated glycol-split species of heparin, as well as heparanase gene silencing inhibit tumor metastasis, angiogenesis and inflammation in experimental animal models. These observations and the unexpected identification of a single functional heparanase, suggest that the enzyme is a promising target for anti-cancer and anti-inflammatory drug development.

250 citations


Journal ArticleDOI
TL;DR: There are other clinical settings where evidence for MMP function contributing to the pathophysiology of disease is strong and drug exposure may not have to be long-term and/or systemic thus reducing the possibility that side-effects will stymie MMPI-based therapy.
Abstract: The matrix metalloproteinase family of enzymes has been a pharmaceutical target for over 20 years. In that time, many drugs have been developed but none have successfully passed clinical trials. A significant problem has been development of dose-limiting side-effects that were revealed during long-term clinical trials in diseases such as arthritis and various cancers. There are, however, other clinical settings where evidence for MMP function contributing to the pathophysiology of disease is strong. A number of these settings will be discussed here together with evidence from animal models that MMP inhibition is a valid strategy to be considered. A major advantage with many of these settings is that drug exposure may not have to be long-term and/or systemic thus reducing the possibility that side-effects will stymie MMPI-based therapy.

240 citations


Journal ArticleDOI
TL;DR: It is suggested that the involvement of TSPO and its ligands in such seemingly disparate biological functions as immunological responses, apoptosis, and steroidogenesis may have a common denominator in the multi-dimensional role of T SPO in the host-defense response to disease and injury.
Abstract: Due to its channel-like properties, the peripheral-type benzodiazepine receptor (PBR) has been renamed the translocator protein (TSPO). In eukaryotes, the TSPO is primarily located in the outer mitochondrial membrane. In prokaryotes, it is found in the cell membrane. A broad spectrum of functions has been attributed to the TSPO, including various host defense responses, developmental processes, and mitochondrial functions. In the present review, we focus on the role of TSPO in immunological responses, apoptosis, and steroidogenesis, to determine whether these functions may be governed by a common denominator including TSPO. At physiological concentrations (nM range), the TSPO specific ligands, PK 11195 and Ro5-4864, appear to be anti-apoptotic. Knockdown of TSPO by genetic manipulation, resulting a reduction by more than 50% in [3H]PK 11195 binding, was reported to show anti-apoptotic effects, suggesting a potential pro-apoptotic function of TSPO. However, a reduction of more than 70% of TSPO abundance was found to cause cell death, possibly due to impairment of other essential cell functions. The pro-apoptotic function of TSPO may involve the modulation of the channel formed by the mitochondrial voltage-dependent anion channel (VDAC) and the adenine nucleotide transporter (ANT) [i.e., the mitochondrial permeability transition pore (MPTP)]. The frequently reported pro-apoptotic effects of PK 11195 and Ro5-4864 may be due to sites with low-affinity binding for these specific TSPO ligands, and not directly related to VDAC and ANT. Also at concentrations in the nM range, PK 11195 and Ro5-4864 appear to stimulate steroidogenesis. For this function TSPO by itself appears to suffice i.e. no involvement of VDAC and ANT. TSPO appears to operate as a translocator/channel to transfer cholesterol into mitochondria where it is converted to pregnenolone, a precursor of further steroidogenesis. Apoptosis and steroids play important roles in various aspects of the host defense response. Thus, our review suggests that the involvement of TSPO and its ligands in such seemingly disparate biological functions as immunological responses, apoptosis, and steroidogenesis may have a common denominator in the multidimensional role of TSPO in the host-defense response to disease and injury.

231 citations


Journal ArticleDOI
TL;DR: The role of JNK in neurodegeneration, particularly in Alzheimer's and Parkinson's disease is examined, and the possibility of intervention on the JNK pathway as a therapeutic approach is illustrated.
Abstract: The c-Jun N-terminal kinases (JNK) belong to the subfamily of mitogen-activated protein kinase (MAPK). JNK is an important transducing enzyme that is involved in many facets of cellular regulation including gene expression, cell proliferation and programmed cell death. The activation of JNK pathways is critical for naturally occurring cell death during development as well as for pathological death associated with neurodegenerative diseases. Initial research concentrated on defining the components and organization of JNK signalling cascades, but more recent studies see JNK as a target to prevent cell death. Several in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with neuronal death in Parkinson's and Alzheimer's disease. So efforts are now aimed at developing chemical inhibitors of this pathway. These have proved effective in vivo, reducing brain damage and some of the symptoms of arthritis in animal models. An alternative cell penetrating peptide approach is now available, with the identification of the JNK permeable peptide inhibitor, which modifies JNK action rather than activation, preventing neuronal death with unprecedented specificity and efficacy in several experimental conditions, including two animal models of ischemia. In this review we examine in detail the role of JNK in neurodegeneration, particularly in Alzheimer's and Parkinson's disease. The possibility of intervention on the JNK pathway as a therapeutic approach is also illustrated.

Journal ArticleDOI
TL;DR: A review of existing modern technologies applicable for the isolation of bioactive native proteins and peptides derived from bovine colostrum, milk and cheese whey and discusses aspects of their current and potential applications for human nutrition and promotion of human health.
Abstract: Milk proteins are known to exert a wide range of nutritional, functional and biological activities. Apart from being a balanced source of valuable amino acids, milk proteins contribute to the consistency and sensory properties of various dairy products. Furthermore, many milk proteins possess specific biological properties which make them potential ingredients of health-promoting foods. These properties are attributed to both native protein molecules and to physiologically active peptides encrypted in the protein molecules. Considerable progress has been made over the last twenty years in technologies aimed at separation, fractionation and isolation in a purified form of many interesting proteins occurring in bovine colostrum and milk. Industrial-scale methods have been developed for native whey proteins such as immunoglobulins, lactoferrin, lactoperoxidase, alpha-lactalbumin and beta-lactoglobulin. Their large-scale manufacture and commercial exploitation is still limited although validated research data about their physiological health benefits is rapidly accumulating. Promising product concepts and novel fields of use have emerged recently, and some of these molecules have already found commercial applications. The same applies to bioactive peptides derived from different milk proteins. Active peptides can be liberated during gastrointestinal digestion or milk fermentation with proteolytic enzymes. Such peptides may exert a number of physiological effects in vivo on the gastrointestinal, cardiovascular, endocrine, immune, nervous and other body systems. However, at present the industrial-scale production of such peptides is limited by a lack of suitable technologies. On the other hand, a number of bioactive peptides have been identified in fermented dairy products, and there are already a few commercial dairy products enriched with blood pressure-reducing milk protein peptides. There is a need to develop methods to optimise the activity of bioactive peptides in food systems and to enable their optimum utilisation in the body. This review highlights existing modern technologies applicable for the isolation of bioactive native proteins and peptides derived from bovine colostrum, milk and cheese whey, and discusses aspects of their current and potential applications for human nutrition and promotion of human health.

Journal ArticleDOI
TL;DR: A crucial role of NM is demonstrated in the pathogenesis of Parkinson's disease by augmentation of microglial activation, leading to a vicious cycle of neuronal death, exposure of additional neuromelanin and chronification of inflammation.
Abstract: Agents suppressing microglial activation are attracting attention as candidate drugs for neuroprotection in Parkinson s disease (PD): While different mechanisms including environmental toxins and genetic factors initiate neuronal damage in the substantia nigra and striatum in PD, there is unequivocal evidence that activation of neuroinflammatory cells aggravates this neurodegenerative process. It was shown that following an acute exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and other toxins the degenerative process continues for years in absence of the toxin. Reactive microglia has been observed in the substantia nigra of patients with PD, indicating that this inflammatory process might aggravate neurodegeneration. By releasing various kinds of noxious factors such as cytokines or proinflammatory molecules microglia may damage CNS cells. The stimuli triggering microgliosis in Parkinsonian syndromes are unknown so far: However, analysis of neuronal loss in PD patients shows that it is not uniform but that neurons containing neuromelanin (NM) are predominantly involved. We hypothesized that extraneuronal melanin might trigger microgliosis, microglial chemotaxis and microglial activation in PD with subsequent release of neurotoxic mediators. The addition of human NM to microglial cell cultures induced positive chemotactic effects, activated the pro-inflammatory transcription factor nuclear factor kappa B (NF-kappaB) via phosphorylation and degradation of the inhibitor protein kappaB (IkappaB), and led to an upregulation of TNF-alpha, IL-6 and NO. These findings demonstrate a crucial role of NM in the pathogenesis of Parkinson's disease by augmentation of microglial activation, leading to a vicious cycle of neuronal death, exposure of additional neuromelanin and chronification of inflammation. Antiinflammatory drugs may be one of the new approaches in the treatment of PD.

Journal ArticleDOI
TL;DR: It is concluded that the CPP are a safe and novel carrier for calcium, phosphate and hydroxide (fluoride) ions to promote enamel remineralization with application in oral care products, dental professional products and foodstuffs.
Abstract: The casein phosphopeptides (CPP) are derived from the milk protein casein by tryptic digestion. The CPP, containing the sequence -Pse-Pse-Pse-Glu-Glu- where Pse is a phosphoseryl residue, stabilize calcium and phosphate ions in aqueous solution and make these essential nutrients bioavailable. Under alkaline conditions the calcium phosphate is present as an alkaline amorphous phase complexed by the CPP, referred to as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The CPP-ACP complexes readily incorporate fluoride ions forming casein phosphopeptide-amorphous calcium fluoride phosphate (CPP-ACFP). A mechanism is discussed which provides a rationale for the ability of the CPP-ACP to remineralize carious lesions in dental enamel. Clinical applications of the CPP-ACP as agents in the treatment of dental caries and other hypomineralized conditions are reviewed. It is concluded that the CPP are a safe and novel carrier for calcium, phosphate and hydroxide (fluoride) ions to promote enamel remineralization with application in oral care products, dental professional products and foodstuffs.

Journal ArticleDOI
TL;DR: The evidence that neurons and glia are altered during diabetes and the relationship these changes have with vascular compromise are examined.
Abstract: Diabetes is known to cause significant alterations in the retinal vasculature. Indeed, diabetic retinopathy is the leading cause of blindness in those of working age. Considerable evidence is emerging that indicates that retinal neurons are also altered during diabetes. Moreover, many types of neuronal deficits have been observed in animal models and patients prior to the onset of vascular compromise. Such clinical tools as the flash ERG, multifocal ERG, colour vision, contrast sensitivity and short-wavelength automated perimetry, all provide novel means whereby neuronal dysfunction can be detected at early stages of diabetes. The underlying mechanisms that lead to neuronal deficits are likely to be broad. Retinal glial cells play an essential role in maintaining the normal function of the retina. There is accumulating evidence that Muller cells are abnormal during diabetes. They are known to become gliotic, display altered potassium siphoning, glutamate and GABA uptake and are also known to express several modulators of angiogenesis. This review will examine the evidence that neurons and glia are altered during diabetes and the relationship these changes have with vascular compromise.

Journal ArticleDOI
TL;DR: This review concentrates on the major causes of anorexia and sarcopenia, and the emergence of new medications such as selective androgen receptor molecules, antimyostatin analogues, megestrol acetate (nanocrystal formulation), and ghrelin agonists are reviewed.
Abstract: There is now a large body of evidence that weight loss in older persons not only increases mortality, but also increases the incidence of hip fracture, functional deterioration and institutionalization. Weight loss is a central component of frailty. There is evidence that it is not only muscle, but also fat loss that leads to these deleterious effects. The reasons why fat loss can be harmful in older persons are reviewed. There are four major causes of weight loss in older persons viz. anorexia, sarcopenia, cachexia and dehydration. This review concentrates on the major causes of anorexia and sarcopenia. In particular, the emergence of new medications such as selective androgen receptor molecules, antimyostatin analogues, megestrol acetate (nanocrystal formulation), and ghrelin agonists are reviewed. The potential role of anabolic steroids is also discussed.

Journal ArticleDOI
TL;DR: Experiments showed that tumour prevention by dietary whey protein was accompanied by increased glutathione levels in serum and tissues as well as enhanced splenic lymphocyte proliferation, phagocytosis and natural killer, T helper and cytotoxic T cell activity.
Abstract: A role for the amount and type of dietary protein in the etiology of cancer has not been studied extensively. Nevertheless, there is no compelling evidence from epidemiological studies to indicate that protein, at levels usually consumed, is a risk factor for cancer. On the other hand, animal studies suggest that certain peptides and amino acids derived from dietary proteins may influence carcinogenesis. The predominant protein in milk, casein, its peptides, but not liberated amino acids, have antimutagenic properties. Animal models, usually for colon and mammary tumorigenesis, nearly always show that whey protein is superior to other dietary proteins for suppression of tumour development. This benefit is attributed to its high content of cystine/cysteine and gamma-glutamylcyst(e)ine dipeptides, which are efficient substrates for the synthesis of glutathione. Glutathione is an ubiquitous cellular antioxidant that directly or through its associated enzymes destroys reactive oxygen species, detoxifies carcinogens, maintains proteins in a reduced state and ensures a competent immune system. Various experiments showed that tumour prevention by dietary whey protein was accompanied by increased glutathione levels in serum and tissues as well as enhanced splenic lymphocyte proliferation, phagocytosis and natural killer, T helper and cytotoxic T cell activity. Whey protein components, beta-lactoglobulin, alpha-lactalbumin and serum albumin were studied infrequently, but results suggest they have anticancer potential. The minor component lactoferrin has received the most attention; it inhibits intestinal tumours and perhaps tumours at other sites. Lactoferrin acts by induction of apoptosis, inhibition of angiogenesis, modulation of carcinogen metabolising enzymes and perhaps acting as an iron scavenger. Supplementing cows with selenium increases the content of selenoproteins in milk, which on isolation inhibited colon tumorigenesis in rats.

Journal ArticleDOI
TL;DR: Any molecule that blocks the process of NHR homotrimerization and the six-helix bundle formation by targeting the gp41 NHR, NHR trimer and CHR may inhibit HIV-mediated membrane fusion.
Abstract: HIV envelope glycoprotein transmembrane subunit gp41 plays a critical role in the fusion between viral and target cell membranes. Upon gp120 binding to CD4 and a coreceptor (CCR5 or CXCR4), gp41 changes its conformation by forming N-helix trimer between N-heptad repeats (NHRs) and then six-helix bundle between the N-trimer and the C-heptad repeats (CHRs). Peptides derived from the NHR and CHR of gp41 extracellular region have demonstrated potent inhibitory activity on the HIV mediated cell fusion. One of these peptides, T-20, became the first success of a new class of anti-HIV agents, named HIV entry inhibitors. However, a relatively long peptide such as T-20 suffers from several limitations including lack of oral bioavailability and high cost of production. Great efforts have been made to develop alternative peptides and proteins with improved anti-HIV-1 activity, increased bioavailability and reduced cost of production. The most promising approach is the development of small molecule HIV entry inhibitors targeting gp41. Any molecule that blocks the process of NHR homotrimerization and the six-helix bundle formation by targeting the gp41 NHR, NHR trimer and CHR may inhibit HIV-mediated membrane fusion. The progress in development of those anti-HIV agents targeting gp41, from polypeptides to small-molecule compounds, is reviewed.

Journal ArticleDOI
TL;DR: Data support the existence of an angiotensin/TGF-beta1 "autocrine loop" in human lung myofibroblasts and also suggest ANG peptide expression by epithelia and macrophages in the IPF lung.
Abstract: Angiotensin II (ANGII) has been identified as a proapoptotic and profibrotic factor in experimental lung fibrosis models, and patients with the ID/DD polymorphism of ANG converting enzyme (ACE), which confers higher levels of ACE, are predisposed to lung fibrosis (Hum. Pathol. 32:521-528, 2001). Previous work from this laboratory has shown that human lung myofibroblasts isolated from patients with Idiopathic Pulmonary Fibrosis (IPF) synthesize the ANGII precursor angiotensinogen (AGT) constitutively. In attempts to understand the mechanisms and consequences of constitutive AGT synthesis by myofibroblasts, we studied myofibroblast-rich primary cultures of lung fibroblasts from patients with IPF (HIPF isolates), primary fibroblasts from normal human lung (NLFs), the IMR90 and WI38 human lung fibroblasts cell lines, and paraffin sections of lung biopsies from patients with IPF. Compared to the normal NLF isolates, HIPF primary fibroblast isolates constitutively synthesized more AGT and TGF-beta1 mRNA, and released more AGT protein, ANGII and active TGF-beta1 protein into serum-free conditioned media (both p<0.01). Incubation of HIPF fibrotic isolates with the ANGII receptor antagonist saralasin reduced both TGF-beta1 mRNA and active protein, suggesting that the constitutive expression of AGT drives the higher expression of TGF-beta1 by the HIPF cells. Consistent with this premise, treatment of either the primary NLFs or the WI38 cell line with 10(-7) M ANGII increased both TGF-beta1 mRNA and soluble active TGF-beta1 protein. Moreover, induction of the myofibroblast transition in the IMR90 cell line with 2 ng/ml TGF-beta1 increased steady state AGT mRNA levels by realtime PCR (8-fold, p<0.01) and induced expression of an AGT promoter-luciferase reporter construct by over 10-fold (p<0.001). Antisense oligonucleotides against TGF-beta1 mRNA or TGF-beta neutralizing antibodies, when applied to the fibrotic HIPF cells in serum-free medium, significantly reduced AGT expression. In lung sections from IPF patient biopsies, immunoreactive AGT/ANGI proteins were detected in myofibroblasts, epithelial cells and presumptive alveolar macrophages. Together, these data support the existence of an angiotensin/TGF-beta1 "autocrine loop" in human lung myofibroblasts and also suggest ANG peptide expression by epithelia and macrophages in the IPF lung. These findings may explain the ability of ACE inhibitors and ANG receptor antagonists to block experimental lung fibrosis in animals, and support the need for evaluation of these agents for potential treatment of human IPF. This manuscript discusses the data described above and their implications regarding IPF pathogenesis.

Journal ArticleDOI
TL;DR: An overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI) is presented, with an emphasis on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand.
Abstract: Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.

Journal ArticleDOI
TL;DR: There is a need to improve the therapy of snakebite envenomations on the following lines: the technologies to produce antivenoms require improvements aimed at obtaining more refined preparations of higher efficacy and safety, while being affordable for the public health systems of developing countries.
Abstract: The therapy of snakebite envenomation has been based on the parenteral administration of animal-derived antivenoms. Despite the success of this treatment at reducing the impact of snakebite mortality and morbidity, mostly due to their capacity to neutralize systemically-acting toxins, antivenoms are of relatively low efficacy in the prevention of venom-induced local tissue damage, which often leads to permanent disability. The issue of safety also remains a concern, particularly for some antivenoms which induce a relatively high incidence of adverse reactions. Consequently, there is a need to improve the therapy of snakebite envenomations on the following lines: (a) the technologies to produce antivenoms require improvements aimed at obtaining more refined preparations of higher efficacy and safety, while being affordable for the public health systems of developing countries. (b) The growing knowledge on the biochemistry and toxicology of snake venoms should pave the way for the identification of natural and synthetic inhibitors of venom toxins, particularly of those involved in local tissue pathology. Such inhibitors might become a highly effective therapeutic tool for the abrogation of venom-induced local tissue damage. (c) A better knowledge of the inflammatory events secondary to venom actions may open the possibility of modulating such response, in order to prevent further tissue damage and to promote successful tissue repair and regeneration. A global partnership, involving many participants and combining scientific, technological and public health actions, is required to achieve a leap forward in the treatment of snakebite envenomations world-wide.

Journal ArticleDOI
TL;DR: Various peptide/protein delivery systems, including biodegradable and nondegradable microspheres, microcapsules, nanocapsules, injectable implants, diffusion-controlled hydrogels and other hydrophilic systems, microemulsions and multiple emulsions, are reviewed, and the use of iontophoresis or electroporation is discussed.
Abstract: The final aim/target of Pharmaceutical Sciences is to design successful dosage forms for effective therapy, considering individual patient needs and compliance. Development of new drug entities, particularly using peptides and proteins, is growing in importance and attracting increased interest, as they are specifically effective at a comparably low dose. These very potent and specific peptides and proteins can now be produced in large quantities due to increased knowledge and advancements in biotechnological and pharmaceutical applications. A number of peptide and protein products are now available on the market, and numerous studies investigating them have been published in the literature. Although many peptide/protein like products are generally designed for parenteral administration, some other noninvasive routes have also been used. For example, desmopressin is delivered nasally and deoxyribonuclease by inhalation. Although peptides and proteins are generally orally inactive, cyclosporine is an exception. In order to design and develop long-acting, more effective peptide/protein drugs, the controlled release mechanisms and effective parameters need to be understood and clarified. Therefore, we review herein various peptide/protein delivery systems, including biodegradable and nondegradable microspheres, microcapsules, nanocapsules, injectable implants, diffusion-controlled hydrogels and other hydrophilic systems, microemulsions and multiple emulsions, and the use of iontophoresis or electroporation, and discuss the results of recent researches.

Journal ArticleDOI
TL;DR: The classification, genes, expression, and structure of mammalian defensins are outlined and their roles in innate and adaptive immune response of the host are focused on.
Abstract: Defensins are endogenous, small, cysteine-rich antimicrobial peptides that are produced by leukocytes and epithelial cells. Substantial evidence accumulated in recent years indicates that mammalian defensins are multifunctional and, by interacting with host cell receptor(s), participate in both the innate and adaptive antimicrobial immunity of the host. A better understanding of the function of defensins in immunity has implications for the development of potential clinical therapeutics for the treatment of infection or cancer. Here we will briefly outline the classification, genes, expression, and structure of mammalian defensins and focus on their roles in innate and adaptive immune response of the host.

Journal ArticleDOI
TL;DR: Angiostatin (AS), internal fragment of plasminogen, has been reported to inhibit human tumor growth and metastasis and it is shown that AS binds to endothelial/cancer cell surface annexin II with high affinity and interferes with plasmine generation suggesting that the role of plAsmin/plasmineogen system may be more complex than the authors previously thought.
Abstract: It is well established that human tumors overproduce plasmin a serine protease that is known to promote angiogenesis, tumor growth and metastasis However, the mechanism by which endothelial or tumor cells regulate the proteolytic activity of plasmin is not well understood Cell surface receptors regulate activation of plasminogen to plasmin and its proteolytic activity Annexin II is one of the well studied receptors for plasminogen and tPA, which binds to plasminogen and converts it to plasmin Plasmin is a highly reactive enzyme which is physiologically involved in fibrinolysis Since the proteolytic activity of plasmin is very tightly regulated, uncontrolled production of plasmin can degrade extracellular matrix (ECM) and basement membrane (BM) of the surrounding blood vessels Thus plasmin plays an important role in neoangiogenesis and cancer invasion and metastasis Therefore, the receptor which regulates plasmin generation may be an attractive target for the development of anti-cancer/anti-metastatic agents Angiostatin (AS), internal fragment of plasminogen, has been reported to inhibit human tumor growth and metastasis We have shown that AS binds to endothelial/cancer cell surface annexin II with high affinity and interferes with plasmin generation suggesting that the role of plasmin/plasminogen system may be more complex than we previously thought In this review we provide a comprehensive analysis of the literature in context of the role of annexin II in angiogenesis, tumor progression and metastasis Compelling evidence from the literature and our own findings suggest that annexin II may be a potential target for the development of effective therapeutic strategies for the treatment of cancer and its induced metastasis

Journal ArticleDOI
TL;DR: The different modalities that have been approached to impair the pro-angiogenic activity of the FGF/FGF receptor system are summarized and discussed to discuss their possible therapeutic implications.
Abstract: Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions, including embryonic development, wound repair, inflammation, and tumor growth. The 1980s saw for the first time the identification, purification, and sequencing of the two prototypic heparin-binding angiogenic fibroblast growth factors (FGF) 1 and 2. Since then, 22 structurally-related members of the FGF family and different classes of FGF receptors have been identified. Several experimental evidences point to a role for various FGFs in the neovascularization process that takes place in inflammation, angioproliferative diseases, and tumor growth. Thus, the FGF/FGF receptor system represents a target for the development of anti-angiogenic therapies. Purpose of this review is to summarize the different modalities that have been approached to impair the pro-angiogenic activity of the FGF/FGF receptor system and discuss their possible therapeutic implications.

Journal ArticleDOI
TL;DR: The capability of dithiocarbamates to inhibit NF-kappaB and proteasome makes these compounds promising anticancer agents, and future research should aim to find the most suitable dithIocarbamate coordination compounds for treatment of cancer and other diseases.
Abstract: Dithiocarbamates and their complexes with transition metals have been used as common pesticides, vulcanizing or analytical agents for decades. These compounds are one of the most reported inhibitors of nuclear factor-kappaB (NF-kappaB) signaling cascade. Recently, it has been found that dithiocarbamates are very potent inhibitors of proteasome. NF-kappaB plays a central role in the immune system and is described as a major actor in many of human cancers mainly because of its protective effects against apoptosis. Molecular mechanisms involved in regulation and function of NF-kappaB pathway have been elucidated recently. In particular, pivotal zinc containing proteins that alter NF-kappaB signal transduction were recognized. Additionally, proteasome system was found to be a key player in NF-kappaB pathway and is an attractive target for anticancer drug development. Collectively, the capability of dithiocarbamates to inhibit NF-kappaB and proteasome makes these compounds promising anticancer agents. This review focuses on the biological activity of dithiocarbamate coordination compounds with regard to their possible molecular targets in NF-kappaB signaling and proteasome (JAMM domain proteins). Future research should aim to find the most suitable dithiocarbamate coordination compounds for treatment of cancer and other diseases.

Journal ArticleDOI
TL;DR: Taking advantage of the different biochemical and molecular characteristics of visceral and subcutaneous adipose tissue may open up novel pharmacological strategies to combat the metabolic and cardiovascular derangements accompanying the metabolic syndrome.
Abstract: The metabolic syndrome represents a constellation of co-morbidities that include central adiposity, insulin resistance, dyslipidemia and hypertension, which results from an elevated prevalence of obesity. An increased abdominal adiposity is observed in upperbody obesity with preferential accumulation of fat in the visceral depot, which renders these individuals more prone to metabolic and cardiovascular problems. The pathophysiology of the metabolic syndrome seems to be closely associated to an elevated efflux of free fatty acids from the visceral fat compartment and a dysregulation of the expression of adipose tissue-derived factors (also termed “adipokines”). Weight reduction and increased physical activity represent the main approach to tackle the “diabesity” epidemic. Nonetheless, taking advantage of the different biochemical and molecular characteristics of visceral and subcutaneous adipose tissue may open up novel pharmacological strategies to combat the metabolic and cardiovascular derangements accompanying the metabolic syndrome.

Journal ArticleDOI
TL;DR: Carnosine, a dipeptide contained in skeletal muscles, was observed to suppress the secretion of inflammatory cytokines by intestinal epithelial cells that had been exposed to oxidative stress.
Abstract: The intestines are an important organ responsible for nutrient absorption, metabolism and recognition of food signals. The organ also acts as a physical and biological barrier against harmful substances including food pathogens and environmental chemicals. Food-derived peptides with a variety of physiological functions have been discovered in the past several decades. Although dietary peptides would mostly be hydrolyzed by digestive enzymes in the intestinal tract, possibly losing their biological functions during this step, some could be absorbed intact and act in their target organs. The intestines are also one of the targets for functional peptides. The intestine-modulatory peptides can be classified into two categories: (1) peptides that express their functions in the intestinal tract and (2) peptides that modulate intestinal epithelial cell functions. The 1(st) group includes peptides that regulate the intestinal absorption of nutrients. Enhancing mineral absorption by casein phosphopeptides, and suppressing dietary cholesterol absorption by soybean peptides are typical examples. The 2(nd) group includes such glutamine-containing peptides as Ala-Gln that show interesting properties in preventing and/or repairing damage caused by oxidative stress and inflammatory reactions. We have found that carinosine (beta-Ala-His) suppressed the secretion of such inflammatory cytokines as IL-8 in human intestinal epithelial cells, suggesting its anti-inflammatory function in the intestines. Peptides that modulate such intestinal immune functions as secretory IgA production and cytokine secretion, and opioid peptides regulating intestinal motility are also included in this group. These intestine-modulatory peptides would be useful as ingredients of future functional foods to prevent lifestyle-related diseases and promote gut health.

Journal ArticleDOI
TL;DR: Developments in this field suggest that toxinology is now entering a golden age in terms of the identification and use of toxins as potent novel pharmaceuticals.
Abstract: Poisons and the toxins found in venomous and poisonous organisms have been the focus of much research over the past 70 years, most of which has been directed at understanding the biochemical and physiological mechanisms by which they elicit their dramatic pathological consequences. Much knowledge has been gained in terms of how poisons and venoms and their composite toxins give rise to the syndromes associated with envenoming and poisoning and in some isolated cases there have been a few such agents promoted for therapeutic use. However, it has only been in the past decade that an explosion of interest has occurred in mining these natural, highly evolved libraries of bioactive toxins and poisons for use in pharmacotherapeutics as drugs or drug leads as well as in diagnostic applications. We ascribe this recent phenomenon to advances in toxinology which have provided investigators with a relatively thorough understanding of the nature of venoms and their biologically active toxins: particularly with regard to the peptidomes and proteomes of venoms. This is in conjunction with our greatly improved understanding of the etiology of many human diseases and the identification of sites of potential therapeutic intervention. In this review we provide an overview of some of the toxins, toxin derivatives or poisons from animal venoms and secretions which are in various stages of development for use as pharmaceuticals or diagnostics in human diseases. As one will recognize, developments in this field suggest that toxinology is now entering a golden age in terms of the identification and use of toxins as potent novel pharmaceuticals.

Journal ArticleDOI
TL;DR: By targeting many of the abnormal neurochemical cascades initiated after TBI, induced hypothermia may modulate neurotoxicity and, consequently, may play a unique role in opening up new therapeutic avenues for treating severe TBI and improving its devastating effects.
Abstract: Neither any neuroprotective drug has been shown to be beneficial in improving the outcome of severe traumatic brain injury (TBI) nor has any prophylactically-induced moderate hypothermia shown any beneficial effect on outcome in severe TBI, despite the optimism generated by preclinical studies. This contrasts with the paradox that hypothermia still is the most powerful neuroprotective method in experimental models because of its ability to influence the multiple biochemical cascades that are set in motion after TBI. The aim of this short review is to highlight the most recent developments concerning the pathophysiology of severe TBI, to review new data on thermoregulation and induced hypothermia, the regulation of core and brain temperature in mammals and the multiplicity of effects of hypothermia in the pathophysiology of TBI. Many experimental studies in the last decade have again confirmed that moderate hypothermia confers protection against ischemic and non-ischemic brain hypoxia, traumatic brain injury, anoxic injury following resuscitation after cardiac arrest and other neurological insults. Many posttraumatic adverse events that occur in the injured brain at a cellular and molecular level are highly temperature-sensitive and are thus a good target for induced hypothermia. The basic mechanisms through which hypothermia protects the brain are clearly multifactorial and include at least the following: reduction in brain metabolic rate, effects on cerebral blood flow, reduction of the critical threshold for oxygen delivery, blockade of excitotoxic mechanisms, calcium antagonism, preservation of protein synthesis, reduction of brain thermopooling, a decrease in edema formation, modulation of the inflammatory response, neuroprotection of the white matter and modulation of apoptotic cell death. The new developments discussed in this review indicate that, by targeting many of the abnormal neurochemical cascades initiated after TBI, induced hypothermia may modulate neurotoxicity and, consequently, may play a unique role in opening up new therapeutic avenues for treating severe TBI and improving its devastating effects. Furthermore, greater understanding of the pathophysiology of TBI, new data from both basic and clinical research, the good clinical results obtained in randomized clinical trials in cardiac arrest and better and more reliable cooling methods have given hypothermia a second chance in treating TBI patients. A critical evaluation of hypothermia is therefore mandatory to elucidate the reasons for previous failures and to design further multicenter randomized clinical trials that would definitively confirm or refute the potential of this therapeutic modality in the management of severe traumatic brain injuries.