scispace - formally typeset
Search or ask a question

Showing papers in "Drug Metabolism Reviews in 2014"


Journal ArticleDOI
TL;DR: This review comprehensively summarizes the existing knowledge about absorption, distribution, metabolism, and elimination of anthocyanins as well as their decomposition within the gastrointestinal lumen.
Abstract: Anthocyanins are a subgroup of flavonoids responsible for the blue, purple, and red color of many fruits, flowers, and leaves. Consumption of foods rich in anthocyanins has been associated with a reduced risk of cardiovascular disease and cancer. The fate of anthocyanins after oral administration follows a unique pattern rather different from those of other flavonoids. Anthocyanins could be absorbed from the stomach as well as intestines. Active transporters may play a role in the absorption of anthocyanins from the stomach as well as in their transfer within the kidney or liver. Anthocyanins such as cyanidin-3-glucoside and pelargonidin-3-glucoside could be absorbed in their intact form into the gastrointestinal wall; undergo extensive first-pass metabolism; and enter the systemic circulation as metabolites. Phenolic acid metabolites were found in the blood stream in much higher concentrations than their parent compounds. These metabolites could be responsible for the health benefits associated with anthocyanins. Some anthocyanins can reach the large intestine in significant amounts and undergo decomposition catalyzed by microbiota. In turn, these decomposition products may contribute to the health effects associated with anthocyanins in the large intestine. This review comprehensively summarizes the existing knowledge about absorption, distribution, metabolism, and elimination of anthocyanins as well as their decomposition within the gastrointestinal lumen.

286 citations


Journal ArticleDOI
TL;DR: In vitro data were identified that characterize cytochrome P-450 (CYP-450) enzymes as potential significant contributors to the primary metabolism of several exogenous cannabinoids, and clinical pharmacogenetic data further support CYP2C9 as a significant contributor to THC metabolism, and a pharmacokinetic interaction study using ketoconazole with oromucosal cannabis extract further supports CYP3A4 as asignificant metabolic pathway for THC and CBD.
Abstract: Exogenous cannabinoids are structurally and pharmacologically diverse compounds that are widely used. The purpose of this systematic review is to summarize the data characterizing the potential for these compounds to act as substrates, inhibitors, or inducers of human drug metabolizing enzymes, with the aim of clarifying the significance of these properties in clinical care and drug interactions. In vitro data were identified that characterize cytochrome P-450 (CYP-450) enzymes as potential significant contributors to the primary metabolism of several exogenous cannabinoids: tetrahydrocannabinol (THC; CYPs 2C9, 3A4); cannabidiol (CBD; CYPs 2C19, 3A4); cannabinol (CBN; CYPs 2C9, 3A4); JWH-018 (CYPs 1A2, 2C9); and AM2201 (CYPs 1A2, 2C9). CYP-450 enzymes may also contribute to the secondary metabolism of THC, and UDP-glucuronosyltransferases have been identified as capable of catalyzing both primary (CBD, CBN) and secondary (THC, JWH-018, JWH-073) cannabinoid metabolism. Clinical pharmacogenetic data...

277 citations


Journal ArticleDOI
TL;DR: The biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics, and carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are summarized.
Abstract: Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.

109 citations


Journal ArticleDOI
TL;DR: This review comprehensively describes the emergence of SCB abuse and provides a historical account of the major case reports, legal decisions and scientific discoveries of the “K2/Spice Phenomenon”.
Abstract: In 2008, the European Monitoring Center for Drugs and Drug Addiction (EMCDDA) detected unregulated, psychoactive synthetic cannabinoids (SCBs) in purportedly all-natural herbal incense products (often known as K2 or Spice) that were being covertly abused as marijuana substitutes. These drugs, which include JWH-018, JWH-073 and CP-47,497, bind and activate the cannabinoid receptors CB1R and CB2R with remarkable potency and efficacy. Serious adverse effects that often require medical attention, including severe cardiovascular, gastrointestinal and psychiatric sequelae, are highly prevalent with SCB abuse. Consequently, progressively restrictive legislation in the US and Europe has banned the distribution, sale and use of prevalent SCBs, initiating cycles in which herbal incense manufacturers replace banned SCBs with newer unregulated SCBs. The contents of the numerous, diverse herbal incense products was unknown when SCB abuse first emerged. Furthermore, the pharmacology of the active components was largely uncharacterized, and confirmation of SCB use was hindered by a lack of known biomarkers. These knowledge gaps prompted scientists across multiple disciplines to rapidly (1) monitor, identify and quantify with chromatography/mass spectrometry the ever-changing contents of herbal incense products, (2) determine the metabolic pathways and major urinary metabolites of several commonly abused SCBs and (3) identify active metabolites that possibly contribute to the severe adverse effect profile of SCBs. This review comprehensively describes the emergence of SCB abuse and provides a historical account of the major case reports, legal decisions and scientific discoveries of the "K2/Spice Phenomenon". Hypotheses concerning potential mechanisms SCB adverse effects are proposed in this review.

104 citations


Journal ArticleDOI
TL;DR: This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Abstract: The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.

91 citations


Journal ArticleDOI
TL;DR: A review of published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Abstract: Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3–1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of en...

84 citations


Journal ArticleDOI
TL;DR: Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.
Abstract: Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by dementia and memory loss for which no cure or effective prevention is currently available. Neurodegeneration in AD is linked to formation of amyloid plaques found in brain tissues of Alzheimer's patients during post-mortem examination. Amyloid plaques are composed of amyloid fibrils and small oligomers - insoluble protein aggregates. Although amyloid plaques are found on the neuronal cell surfaces, the mechanism of amyloid toxicity is still not well understood. Currently, it is believed that the cytotoxicity is a result of the nonspecific interaction of small soluble amyloid oligomers (rather than longer fibrils) with the plasma membrane. In recent years, nanotechnology has contributed significantly to understanding the structure and function of lipid membranes and to the study of the molecular mechanisms of membrane-associated diseases. We review the current state of research, including applications of the latest nanotechnology approaches, on the interaction of lipid membranes with the amyloid-β (Aβ) peptide in relation to amyloid toxicity. We discuss the interactions of Aβ with model lipid membranes with a focus to demonstrate that composition, charge and phase of the lipid membrane, as well as lipid domains and rafts, affect the binding of Aβ to the membrane and contribute to toxicity. Understanding the role of the lipid membrane in AD at the nanoscale and molecular level will contribute to the understanding of the molecular mechanism of amyloid toxicity and may aid into the development of novel preventive strategies to combat AD.

82 citations


Journal ArticleDOI
TL;DR: Recent advances with these types of magnetic NPs and their potential use as CAs in MRI are reported, as well as new insights into the selectivity and cellular transport mechanism that occurs following injection are reported.
Abstract: Improvements in diagnostic measures for biomedical applications have been investigated in various studies for better interpretations of biological abnormalities and several medical conditions. The use of imaging techniques, such as magnetic resonance imaging (MRI), is widespread and becoming a standard procedure for such specialized applications. A major avenue being studied in MRI is the use of magnetic nanoparticles (NPs) as contrast agents (CAs). Among various approaches, current research also incorporates use of superparamagnetic iron oxide NPs and manganese-based NPs with biocompatible coatings for improved stability and reduced biodegradation when exposed to a biological environment. In this review, recent advances with these types of magnetic NPs and their potential use as CAs in MRI are reported, as well as new insights into the selectivity and cellular transport mechanism that occurs following injection.

71 citations


Journal ArticleDOI
TL;DR: It will be argued that the major role of glycine conjugation is to dispose of the end products of phenylpropionate metabolism, and it will be explained that the glycine Conjugation of benzoate, a commonly used preservative, exacerbates the dietary deficiency of Glycine in humans.
Abstract: The National Research Foundation for a PhD bursary awarded to C.P.S. Badenhorst, and an MSc bursary awarded to C. Nortje. The National Research Foundation also awarded a Thuthuka research grant [TTK20110803000023154] to R. van der Sluis.

66 citations


Journal ArticleDOI
TL;DR: Tdp1 catalysis from a structure–function perspective, TDP1 substrates and Tdp1 potential as a therapeutic target are discussed, best illustrated by a catalytic TTP mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy.
Abstract: DNA is subject to a wide range of insults, resulting from endogenous and exogenous sources that need to be metabolized/resolved to maintain genome integrity. Tyrosyl-DNA phosphodiesterase I (Tdp1) is a eukaryotic DNA repair enzyme that catalyzes the removal of covalent 3'-DNA adducts. As a phospholipase D superfamily member Tdp1 utilizes two catalytic histidines each within a His-Lys-Asn motif. Tdp1 was discovered for its ability to hydrolyze the 3'-phospho-tyrosyl that in the cell covalently links DNA Topoisomerase I (Topo1) and DNA. Tdp1's list of substrates has since grown and can be divided into two groups: protein-DNA adducts, such as camptothecin stabilized Topo1-DNA adducts, and modified nucleotides, including oxidized nucleotides and chain terminating nucleoside analogs. Since many of Tdp1's substrates are generated by clinically relevant chemotherapeutics, Tdp1 became a therapeutic target for molecularly targeted small molecules. Tdp1's unique catalytic cycle allows for two different targeting strategies: (1) the intuitive inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of chemotherapeutically induced DNA adducts, thereby enhancing their toxicity and (2) stabilization of the Tdp1-DNA covalent reaction intermediate, prevents resolution of Tdp1-DNA adduct and increases the half-life of this potentially toxic DNA adduct. This concept is best illustrated by a catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy, and results in an increased stability of its Tdp1-DNA reaction intermediate. Here, we will discuss Tdp1 catalysis from a structure-function perspective, Tdp1 substrates and Tdp1 potential as a therapeutic target.

63 citations


Journal ArticleDOI
TL;DR: This review focuses on drugs that have been reported to be reduced at the carbonyl group in vivo and summarizes the published data in order to thoroughly describe the reductive metabolism of the selected drugs and to demonstrate the role ofcarbonyl reduction in the context of their overall metabolism.
Abstract: The understanding of drug biotransformation is an important medical topic The oxidative pathways that involve CYPs have been extensively studied in drug metabolism in contrast to the reductive pathways This review focuses on drugs that have been reported to be reduced at the carbonyl group in vivo Although the carbonyl reduction of these drugs is well known, our understanding of the carbonyl reducing enzymes (CRE) that perform these reactions is limited We have summarized the published data in order to thoroughly describe the reductive metabolism of the selected drugs and to demonstrate the role of carbonyl reduction in the context of their overall metabolism The number of drugs recognized as substrates for CREs has increased considerably in recent years Moreover, the importance of carbonyl reduction in the overall metabolism of these drugs is often surprisingly high Because only limited information is available about the CREs responsible for these reactions, additional research is needed to improve our understanding of the metabolism of drugs undergoing carbonyl reduction Carbonyl reduction should be investigated during drug development because it can either positively or negatively influence drug efficacy

Journal ArticleDOI
TL;DR: This review summarizes the knowledge on the expression of phase I and phase II XMEs and transporters in extrahepatic tissues at the body's internal–external interfaces in the lung, kidney, bladder and skin.
Abstract: In general, xenobiotic metabolizing enzymes (XMEs) are expressed in lower levels in the extrahepatic tissues than in the liver, making the former less relevant for the clearance of xenobiotics. Local metabolism, however, may lead to tissue-specific adverse responses, e.g. organ toxicities, allergies or cancer. This review summarizes the knowledge on the expression of phase I and phase II XMEs and transporters in extrahepatic tissues at the body's internal-external interfaces. In the lung, CYPs of families 1, 2, 3 and 4 and epoxide hydrolases are important phase I enzymes, while conjugation is less relevant. In skin, phase I-related enzymatic reactions are considered less relevant. Predominant skin XMEs are phase II enzymes, whereby glucuronosyltransferases (UGT) 1, glutathione-S-transferase (GST) and N-acetyltransferase (NAT) 1 are important for detoxification. The intestinal epithelium expresses many transporters and phase I XME with high levels of CYP3A4 and CYP3A5 and phase II metabolism is mainly related to UGT, NAT and Sulfotransferases (SULT). In the kidney, conjugation reactions and transporters play a major role for excretion processes. In the bladder, CYPs are relevant and among the phase II enzymes, NAT1 is involved in the activation of bladder carcinogens. Expression of XMEs is regulated by several mechanisms (nuclear receptors, epigenetic mechanisms, microRNAs). However, the understanding why XMEs are differently expressed in the various tissues is fragmentary. In contrast to the liver - where for most XMEs lower expression is demonstrated in early life - the XME ontogeny in the extrahepatic tissues remains to be investigated.

Journal ArticleDOI
TL;DR: The current review provides a comprehensive summary of biotransformation and bioactivation pathways of aliphatic nitrogen containing heterocycles and strategies to mitigate metabolic liabilities.
Abstract: Aliphatic nitrogen heterocycles such as piperazine, piperidine, pyrrolidine, morpholine, aziridine, azetidine, and azepane are well known building blocks in drug design and important core structures in approved drug therapies. These core units have been targets for metabolic attack by P450s and other drug metabolizing enzymes such as aldehyde oxidase and monoamine oxidase (MAOs). The electron rich nitrogen and/or α-carbons are often major sites of metabolism of alicyclic amines. The most common biotransformations include N-oxidation, N-conjugation, oxidative N-dealkylation, ring oxidation, and ring opening. In some instances, the metabolic pathways generate electrophilic reactive intermediates and cause bioactivation. However, potential bioactivation related adverse events can be attenuated by structural modifications. Hence it is important to understand the biotransformation pathways to design stable drug candidates that are devoid of metabolic liabilities early in the discovery stage. The curren...

Journal ArticleDOI
TL;DR: An up-to-date review on stereoselectivity of chiral drug transport and enantiomer–transporter interaction was presented and it was suggested that further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.
Abstract: Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.

Journal ArticleDOI
TL;DR: Investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers and major advances in the knowledge have been identified and future research directions are highlighted.
Abstract: Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.

Journal ArticleDOI
TL;DR: A perspective on anticipated future advancements in SERS techniques to address some of the most critical challenges in the areas of diagnostics, detection, and sensing is presented.
Abstract: In this review of the literature on surface-enhanced Raman scattering (SERS), we describe recent developments of this technique in the medical field. SERS has developed rapidly in the last few years as a result of the fascinating advancements in instrumentation and the ability to interpret complex Raman data using high-processional, computer-aided programs. This technique, has many advantages over ordinary spectroscopic analytical techniques - such as extremely high sensitivity, molecular selectivity, intense signal and great precision - that can be leveraged to address complex medical diagnostics problems. This review focuses on the SERS-active substrate, as well as major advances in cancer and bacteria detection and imaging. Finally, we present a perspective on anticipated future advancements in SERS techniques to address some of the most critical challenges in the areas of diagnostics, detection, and sensing.

Journal ArticleDOI
TL;DR: Challenges to ophthalmic drug delivery, including Phase I drug metabolism and transport in the eye, and the role of three specific P450s, CYP4B1, CYB1B1 and CYP 4V2 in ocular inflammation and genetically determined ocular disease are discussed.
Abstract: Drug metabolism and transport processes in the liver, intestine and kidney that affect the pharmacokinetics and pharmacodynamics of therapeutic agents have been studied extensively. In contrast, comparatively little research has been conducted on these topics as they pertain to the eye. Recently, however, catalytic functions of ocular cytochrome P450 enzymes have gained increasing attention, in large part due to the roles of CYP1B1 and CYP4V2 variants in primary congenital glaucoma and Bietti’s corneoretinal crystalline dystrophy, respectively. In this review, we discuss challenges to ophthalmic drug delivery, including Phase I drug metabolism and transport in the eye, and the role of three specific P450s, CYP4B1, CYP1B1 and CYP4V2 in ocular inflammation and genetically determined ocular disease.

Journal ArticleDOI
TL;DR: Understanding of the differential effects of diverse types of nanoparticles on pulmonary immune homeostasis, particularly previously underappreciated beneficial outcomes, supports rational ENP translation into novel therapeutics for prevention and/or treatment of inflammatory lung disorders.
Abstract: Engineered nanoparticles (ENP), which could be composed of inorganic metals, metal oxides, metalloids, organic biodegradable and inorganic biocompatible polymers, are being used as carriers for vaccine and drug delivery. There is also increasing interest in their application as delivery agents for the treatment of a variety of lung diseases. Although many studies have shown ENP can be effectively and safely used to enhance the delivery of drugs and vaccines in the periphery, there is concern that some ENP could promote inflammation, with unknown consequences for lung immune homeostasis. In this study, we review research on the effects of ENP on lung immunity, focusing on recent studies using diverse animal models of human lung disease. We summarize how the inflammatory and immune response to ENP is influenced by the diverse biophysical and chemical characteristics of the particles including composition, size and mode of delivery. We further discuss newly described unexpected beneficial properties of ENP administered into the lung, where biocompatible polystyrene or silver nanoparticles can by themselves decrease susceptibility to allergic airways inflammation. Increasing our understanding of the differential effects of diverse types of nanoparticles on pulmonary immune homeostasis, particularly previously underappreciated beneficial outcomes, supports rational ENP translation into novel therapeutics for prevention and/or treatment of inflammatory lung disorders.

Journal ArticleDOI
TL;DR: The composition and size of NPs can cause significant pro-inflammatory response that can influence the integrity of the blood–brain barrier (BBB) in vitro.
Abstract: The purpose of the current studies was to determine if systemic exposure of various metallic nanoparticles differing in size and composition [silver (Ag-NPs, 25, 40 and 80 nm), copper-oxide (Cu-NPs, 40 and 60 nm) or gold (Au-NPs, 3 and 5 nm)] can induce the release of pro-inflammatory mediators that influence the restrictive nature of the blood-brain barrier (BBB) in vitro. Confluent porcine brain microvessel endothelial cells (pBMECs) (8-12 days) were treated with various metallic nanoparticles (15 μg/ml). Extracellular concentrations of pro-inflammatory mediators (IL-1β, TNFα and PGE2) were evaluated using ELISA. pBMECs were cultured in standard 12-well Transwell® inserts, and permeability was evaluated by measuring the transport of fluorescein across the pBMEC monolayers. PGE2 release following Cu-NP exposure was significantly increased when compared to the control. Similar results were observed for Ag-NPs but not Au-NPs. The secretion of TNFα and IL-1β was observed for both Cu-NPs and Ag-NPs but not in response to Au-NPs. The post-treatment time profiles of TNFα and IL-1β revealed that the IL-1β response was more persistent. The permeability ratios (exposure/control) were significantly greater following exposure to Cu-NPs or Ag-NPs, compared to Au-NPs. Together, these data suggest that the composition and size of NPs can cause significant pro-inflammatory response that can influence the integrity of the BBB.

Journal ArticleDOI
TL;DR: The manner in which the skin responds to neoantigens through local antigen presentation and innate immune sensing is reviewed with a focus on insights gained from the contact hypersensitivity (CHS) field.
Abstract: Drug-induced skin rashes are poorly understood idiosyncratic reactions, and current methods cannot predict their occurrence. Most idiosyncratic drug reactions are thought to be caused by chemically reactive metabolites, and the skin is a frequent site of idiosyncratic reactions; however, the skin has a very limited capacity to metabolize drugs. To balance this, the skin represents a protective barrier with a very active immune response against pathogens and other types of skin injury. Therefore its response to reactive metabolites is quite different from that of the liver. The purpose of this review is to integrate emerging findings into proposed mechanisms of drug and carcinogen metabolism in the skin that are likely responsible for rashes and other immune responses of the skin. Current evidence suggests the skin possesses significant sulfotransferase and flavin monooxygenases activities, but very low cytochromes P450 activity. However, there are skin-specific P450s that are not present in the li...

Journal ArticleDOI
TL;DR: It is shown that the placenta constitute a unique metabolizing organ with significant overlap of exogenous and endogenous compounds metabolism controlled by nuclear receptors.
Abstract: Over the past 20 years, the toxicological and protective roles of the placental barrier with respect to drug detoxification and transporter-controlled protection of the fetus have been intensively examined. Several cytochrome P450 enzymes are expressed in placental trophoblast at different stages of pregnancy, though only a few of these have functional activity to metabolize xenobiotics. Drug transporters such as P-glycoprotein/MDR1 or breast cancer resistance protein (BCRP) are highly expressed in the placenta, and their functional activities have been demonstrated in the placenta both in vitro and in vivo. In addition, several studies have reported on ligand-activated transcription factors and nuclear receptors referred to as “xenosensors” in the placenta. The xenosensors control transcriptional regulation of both xenobiotic-metabolizing enzymes and drug transporters in different organs. Their ligands include toxic compounds and environmental pollutants, drugs, as well as herbal, dietary or vita...

Journal ArticleDOI
TL;DR: A review of poly(lactic-co-glycolic) acid (PLGA) nanoparticle (NP) biodistribution was conducted with the intent of identifying particle behavior for drug delivery applications, and noted trends involved particle behavior based on individual organ, particle size, animal model, type of indicator, and method of delivery.
Abstract: A review of poly(lactic-co-glycolic) acid (PLGA) nanoparticle (NP) biodistribution was conducted with the intent of identifying particle behavior for drug delivery applications. Databases such as Science Direct and Web of Science were used to locate papers on biodistribution of intravenous (i.v.) and orally delivered PLGA NPs in mice and rats. The papers included in the review were limited to those that report biodistribution data in terms of % dose particles/g tissue in the liver, kidney, spleen, lung, heart and brain. Noted trends involved particle behavior based on individual organ, particle size, animal model, type of indicator (entrapped versus covalently linked) and method of delivery (oral or i.v.). The liver showed the highest uptake of particles in mice, and the lung showed the highest uptake in rats. Minimal amounts of particles were detected in both the heart and brain of rats and mice. In rats, the concentration of particles approached 0% dose/g or decreased significantly over 24 h after administration of a single dose of particles. Higher concentrations of smaller particles were evident in the liver, kidney and spleen. Orally delivered drugs showed little to no uptake within the 24 h analysis when compared with i.v. delivered NPs. Differences in particle concentrations between rats and mice were also observed as expected when expressed as % dose/g organ. Particles with covalently linked indicators showed lower concentrations in tissues than particles with physically entrapped indicators. Further research on oral delivery of PLGA NPs as well as distribution beyond 24 h is needed to fully understand particle behavior in vivo for successful application of NPs in drug delivery.

Journal ArticleDOI
TL;DR: Under inflammatory conditions there exists an inflammation-epoxygenase-EET-inflammation vicious cycle in which the inflammation-induced downregulation of CYP epoxygenases causes a decrease in the EET production, which might help to better understanding of pathophysiology of chronic cardiovascular diseases.
Abstract: In addition to their role as xenobiotic metabolizing enzymes, cytochrome P450 (CYP) epoxygenases actively contribute to the metabolism of endogenous substances such as arachidonic acid. Epoxyeicosatrienoic acids (EETs) are epoxide derivative of arachidonic acid. CYP2C8/9 and CYP2J2 are the main epoxygenases expressed in human tissues including endothelial cells which are the chief sources of EET formation in human body. Once formed, EETs are primarily metabolized to their less biologically active metabolites, dihydroxyeicosatrienoic acids, by soluble epoxy hydrolase (sEH) enzyme. EETs possess a wide range of established protective effects on human cardiovascular system of which vasodilatory, angiogenic and anti-inflammatory actions have been more extensively described. On the other hand, inflammation has shown to decrease the expression and activity of CYP enzyme, including epoxygenases. Given the fact that CYP epoxygenase-derive EETs exhibit potent cardiovascular protective effects, including anti-inflammation, and that inflammation suppress CYP activation and EET formation, it would make sense to speculate that under inflammatory conditions there exists an inflammation-epoxygenase-EET-inflammation vicious cycle in which the inflammation-induced downregulation of CYP epoxygenases causes a decrease in the EET production. Insufficient EET synthesis would, in turn, lead to an ineffective EET-mediated anti-inflammatory effect, leading to an augmentation of systemic and regional inflammatory responses and further downregulation of CYP epoxygenase activity/EET production. This cycle, if any, might help to better understanding of pathophysiology of chronic cardiovascular diseases and also could be an emerging target for further pharmacological therapy of disorders in which increased inflammatory responses are known to occur.

Journal ArticleDOI
TL;DR: Novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/Mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/ mouse with humanization liver are developed help to validate the in vivo relevance of the in vitro human DDI data.
Abstract: Poly-therapy is common due to co-occurrence of several ailments in patients, leading to the elevated possibility of drug-drug interactions (DDI). Pharmacokinetic DDI often accounts for severe adverse drug reactions in patients resulting in withdrawal of drug from the market. Hence, the prediction of DDI is necessary at pre-clinical stage of drug development. Several human tissue and cell line-based in vitro systems are routinely used for screening metabolic and transporter pathways of investigational drugs and for predicting their clinical DDI potentials. However, ample constraints are associated with the in vitro systems and sometimes in vitro-in vivo extrapolation (IVIVE) fail to assess the risk of DDI in clinic. In vitro-in vivo correlation model in animals combined with human in vitro studies may be helpful in better prediction of clinical outcome. Native animal models vary remarkably from humans in drug metabolizing enzymes and transporters, hence, the interpretation of results from animal DDI studies is difficult. With the advent of modern molecular biology and engineering tools, novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/mouse with humanized liver are developed. These models nearly simulate human-like drug metabolism and help to validate the in vivo relevance of the in vitro human DDI data. This review briefly discusses the application of such novel pre-clinical models for screening various type of DDI along with their advantages and limitations.

Journal ArticleDOI
TL;DR: This article summarizes the current knowledge about the substrate preferences of BCRP and overview the factors which determine its activity, inhibition and substrate recognition, focusing on the structural features of the transporter.
Abstract: The xenobiotic transporters are among the most important constituents of detoxification system in living organisms. Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of xenobiotics. To understand its role in chemotherapeutic and multidrug resistance, it is crucial to establish the determinants of its substrate specificity, which obviously is of high relevance for successful therapy of many diseases. This article summarizes the current knowledge about the substrate preferences of BCRP. We overview the factors which determine its activity, inhibition and substrate recognition, focusing on the structural features of the transporter. BCRP substrate specificity is quite low as it interacts with a spectrum of substances with only a few common features: hydrophobic and aromatic regions, possibly a flat conformation and the metal ion-, oxygen- and nitrogen-containing functionalities, most of which may be the donors/acceptors of H-bonds. Several amino acid residues and structural motifs are responsible for BCRP activity and substrate recognition. Thus, the active form of BCRP, at least a dimer or a larger oligomer is maintained by intramolecular disulfide bridge that involves Cys(603) residues. The GXXXG motif in transmembrane helix 1, Cys residues, Arg(482) and Lys(86) are responsible for maintaining the protein structure, which confers transport activity, and the His(457) or Arg(456) residues are directly involved in substrate binding. Arg(482) does not directly bind substrates, but electrostatically interacts with charged molecules, which initiates the conformational changes that transmit the signal from the transmembrane regions to the ABC domain.

Journal ArticleDOI
TL;DR: This review highlights current and future prospects for potential cancer therapies based on the use of nano-sized materials and proposes nanomaterials for the inhibition of the self-renewal pathways of CSCs by focusing on the Hedgehog, Notch, and Wnt/β-catenin self-Renewal mechanisms.
Abstract: Recent developments in cancer biology have identified the existence of a sub-poplulation of cells - cancer stem cells (CSC) that are resistant to most traditional therapies (e.g. chemotherapy and radiotherapy) and have the ability to repair their damaged DNA. These findings have necessitated a break with traditional oncology management and encouraged new perspectives concerning cancer treatment. Understanding the functional biology of CSCs - especially the signaling pathways that are involved in their self-renewal mechanisms - is crucial for discovering new forms of treatment. In this review, we highlight current and future prospects for potential cancer therapies based on the use of nano-sized materials. Nanomaterials could revolutionize cancer management because of their distinctive features - unique surface chemistry, strong electronic, optic, and magnetic properties - that are found neither in bulk materials nor in single molecules. Based on these distinct properties, we believe that nanomaterials could be excellent candidates for use in CSC research in order to optimize cancer therapeutics. Moreover, we propose these nanomaterials for the inhibition of the self-renewal pathways of CSCs by focusing on the Hedgehog, Notch, and Wnt/β-catenin self-renewal mechanisms. By introducing these methods for the detection, targeting, and destruction of CSCs, an efficient alternative treatment for the incurable disease of cancer could be provided.

Journal ArticleDOI
Minmin Huang1, Haihong Hu1, Li Ma1, Quan Zhou1, Lushan Yu1, Su Zeng1 
TL;DR: In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.
Abstract: Reduction of C = C bonds by reductases, found in a variety of microorganisms (eg yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds In addition, several mutations in the reductase gene have been identified, some associated with diseases Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment

Journal ArticleDOI
TL;DR: In order to improve the overall level of fluorescence labeling in TCMM active tracer, the improvement on FLATT's detection sensitivity and biological affinity is urgent and critical to allow study of these interesting molecules.
Abstract: Active substances in traditional Chinese Medicine (TCM) contain not only a variety of small molecules, but also many other macromolecules (TCMMs), such as proteins, peptides and polysaccharides. Active TCMM can achieve good therapeutic effects by regulating the body's overall function with lower side effects. This review summarized the literatures published in recent years on the application of fluorescently labeled tracer technique for detection of natural active macromolecules in TCM. Classified by fluorescent markers, applications of fluorescein, rhodamine, and quantum dots (QDs) in TCMM active tracer are reviewed, and the methods and principles of TCMM fluorescent marker are illustrated. Studies on active TCMMs and their action mechanism are quite difficult due to a multitarget, multicomponent, and multipath system of TCM. However, the development of fluorescently labeled active tracer technique (FLATT) provides this research with new tools. Traditional fluorescent markers have many deficiencies, such as easily quenched, short luminous cycle, and intrinsic toxicity. Relatively, FLATT has many obvious advantages, and its application in TCMM is still at the early stage. In order to improve the overall level of fluorescence labeling in TCMM active tracer, the improvement on FLATT's detection sensitivity and biological affinity is urgent and critical to allow study of these interesting molecules.