scispace - formally typeset
Search or ask a question

Showing papers in "Ecosystems in 2017"


Journal ArticleDOI
TL;DR: The concept of hot spots and hot moments (HSHM) was coined by McClain et al. as discussed by the authors to describe the potential for rare places and rare events to exert a disproportionate influence on the movement of elements at the scale of landscapes and ecosystems.
Abstract: The phrase “hot spots and hot moments” first entered the lexicon in 2003, following the publication of the paper “Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems” by McClain and others (Ecosystems 6:301–312, 2003). This paper described the potential for rare places and rare events to exert a disproportionate influence on the movement of elements at the scale of landscapes and ecosystems. Here, we examine how the cleverly named hot spot and hot moment concept (hereafter HSHM) has influenced biogeochemistry and ecosystem science over the last 13 years. We specifically examined the extent to which the HSHM concept has: (1) motivated research aimed at understanding how and why biogeochemical behavior varies across spatiotemporal scales; (2) improved our ability to detect HSHM phenomena; and (3) influenced our approaches to restoration and ecosystem management practices. We found that the HSHM concept has provided a highly fertile framework for a substantial volume of research on the spatial and temporal dynamics of nutrient cycling, and in doing so, has improved our understanding of when and where biogeochemical rates are maximized. Despite the high usage of the term, we found limited examples of rigorous statistical or modeling approaches that would allow ecosystem scientists to not only identify, but scale the aggregate impact of HSHM on ecosystem processes. We propose that the phrase “hot spots and hot moments” includes two implicit assumptions that may actually be limiting progress in applying the concept. First, by differentiating “hot spots” from “hot moments,” the phrase separates the spatial and temporal components of biogeochemical behavior. Instead, we argue that the temporal dynamics of a putative hot spot are a fundamental trait that should be used in their description. Second, the adjective “hot” implicitly suggests that a place or a time must be dichotomously classified as “hot or not.” We suggest instead that each landscape of interest contains a wide range of biogeochemical process rates that respond to critical drivers, and the gradations of this biogeochemical topography are of greater interest than the maximum peaks. For these reasons, we recommend replacing the HSHM terminology with the more nuanced term ecosystem control points. “Ecosystem control” suggests that the rate must be of sufficient magnitude or ubiquity to affect dynamics of the ecosystem, while “points” allows for descriptions that simultaneously incorporate both spatial and temporal dynamics. We further suggest that there are at least four distinct types of ecosystem control points whose influence arises through distinct hydrologic and biogeochemical mechanisms. Our goal is to provide the tools with which researchers can develop testable hypotheses regarding the spatiotemporal dynamics of biogeochemistry that will stimulate advances in more accurately identifying, modeling and scaling biogeochemical heterogeneity to better understand ecosystem processes.

272 citations


Journal ArticleDOI
TL;DR: In this article, a globalisasi mengalami perkembangan yang sangat pesat dengan kemajuan teknologi sehingga manusia dapat berinteraksi satu sama lainnya tampa dibatasi jarak and waktu.
Abstract: Sekarang ini globalisasi mengalami perkembangan yang sangat pesat dengan kemajuan teknologi sehingga manusia dapat berinteraksi satu sama lainnya tampa dibatasi jarak dan waktu. Hal ini terjadi karena adanya teknologi yang memberikan kemudahan kepada manusia yang dapat membantu manusia mencakup berbagai aspek kehidupan. Salah satu kemajuan teknologi yang membuat perubahan pada manusia adalah komputer. Dengan menggunakan komputer banyak hal-hal yang dapat dikerjakan menjadi lebih mudah, lebih cepat dan lebih baik hasilnya. Salah satu perkerjaan yang dapat dikerjakan dengan mudah dengan menggunakan komputer adalah desain grafis Desain grafis adalah suatu bentuk komunikasi visual yang menggunakan gambar untuk menyampaikan informasi atau pesan seefektif mungkin. Dalam disain grafis, teks juga dianggap gambar karena merupakan hasil abstraksi simbol-simbol yang bisa dibunyikan. disain grafis diterapkan dalam disain komunikasi dan fine art. Seni disain grafis mencakup kemampuan kognitif dan keterampilan visual, termasuk di dalamnya tipografi, ilustrasi, fotografi, pengolahan gambar, dan tata letak. Perkembangan teknologi yang sangat pesat juga sangat mendorong masyarakat untuk mempersiapkan diri mempunyai keterampilan sesuai dengan perkembangan jaman agar menjadi modal dalam berusaha atau mencari pekerjaan.

124 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO 2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundras.
Abstract: Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September–December 2013–2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1 and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 to 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.

110 citations


Journal ArticleDOI
TL;DR: It is argued that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions produce dynamics and patterns that usually cannot be incorporated into simpler SIMs.
Abstract: The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

94 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the long-term effects of fire suppression on vegetation, water, and forest resilience, and found that fire suppression can increase landscape heterogeneity, and likely improve resilience to disturbances, such as fire and drought.
Abstract: Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed wildfire—a regime in which fires are allowed to burn naturally and only suppressed under defined management conditions—offer a potential strategy to ameliorate the effects of fire suppression. Understanding the long-term effects of this strategy on vegetation, water, and forest resilience is increasingly important as the use of managed wildfire becomes more widely accepted. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover by 22%, and increasing meadow areas by 200% and shrublands by 24%. Statistical upscaling of 3300 soil moisture observations made since 2013 suggests that large increases in wetness occurred in sites where fire caused transitions from forests to dense meadows. The runoff ratio (ratio of annual runoff to precipitation) from the basin appears to be increasing or stable since 1973, compared to declines in runoff ratio for nearby, unburned watersheds. Managed wildfire appears to increase landscape heterogeneity, and likely improves resilience to disturbances, such as fire and drought, although more detailed analysis of fire effects on basin-scale hydrology is needed.

85 citations


Journal ArticleDOI
TL;DR: In this article, it is shown that ongoing human modification to aquatic ecosystems, riparian habitats and river floodplains affect the magnitude, quality, and spatial and temporal patterning of aquatic subsidies in terrestrial landscapes.
Abstract: Floods, spatially complex water flows, and organism movements all generate important fluxes of aquatic-derived materials into terrestrial habitats, counteracting the gravity-driven downhill transport of matter from terrestrial-to-aquatic ecosystems. The magnitude of these aquatic subsidies is often smaller than terrestrial subsidies to aquatic ecosystems but higher in nutritional quality, energy density, and nutrient concentration. The lateral extent of biological aquatic subsidies is typically small, extending only a few meters into riparian habitat; however, terrestrial consumers often aggregate on shorelines to capitalize on these high-quality resources. Although the ecological effects of aquatic subsidies remain partially understood, it is clear that ongoing human modification to aquatic ecosystems, riparian habitats and river floodplains affect the magnitude, quality, and spatial and temporal patterning of aquatic subsidies in terrestrial landscapes. These changes will alter the character of aquatic–terrestrial coupling and have consequences for terrestrial organisms that rely on these high-quality and temporally dependable resource subsidies. Homogenization of landscapes and flow regimes, eutrophication, exotic species, and contaminants all represent threats to the vital flows of aquatic-derived resources into terrestrial ecosystems. Research emphasizing that landscapes are integrated terrestrial–aquatic systems, characterized by both biological and hydrological flows among habitats, is needed for understanding the consequences of aquatic subsidies and managing ecological risks of ongoing human development.

85 citations


Journal ArticleDOI
TL;DR: It is argued that full integration requires going deeper by taking into account individual organisms and the evolutionary and physico-chemical principles that drive their behavior, and next-generation ecosystem scientists should include the individual-based approach in their toolkit and focus on addressing real systems.
Abstract: Ecosystem and community ecology have evolved along different pathways, with little overlap. However, to meet societal demands for predicting changes in ecosystem services, the functional and structural view dominating these two branches of ecology, respectively, must be integrated. Biodiversity–ecosystem function research has addressed this integration for two decades, but full integration that makes predictions relevant to practical problems is still lacking. We argue that full integration requires going, in both branches, deeper by taking into account individual organisms and the evolutionary and physico-chemical principles that drive their behavior. Individual-based models are a major tool for this integration. They have matured by using individual-level mechanism to replace the demographic thinking which dominates classical theoretical ecology. Existing individual-based ecosystem models already have proven useful both for theory and application. Still, next-generation individual-based models will increasingly use standardized and re-usable submodels to represent behaviors and mechanisms such as growth, uptake of nutrients, foraging, and home range behavior. The strategy of pattern-oriented modeling then helps make such ecosystem models structurally realistic by developing theory for individual behaviors just detailed enough to reproduce and explain patterns observed at the system level. Next-generation ecosystem scientists should include the individual-based approach in their toolkit and focus on addressing real systems because theory development and solving applied problems go hand-in-hand in individual-based ecology.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest.
Abstract: Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m−2 s−1, mean ± 1 SD) and net sinks of CH4 (−2.17 ± 1.60 nmol m−2 s−1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m−2 s−1) and net CH4 sink, but with large uncertainty (−0.27 ± 1.04 nmol m−2 s−1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m−2 s−1), but also net CH4 sources (up to 0.98 nmol m−2 s−1), with a mean of 0.11 ± 0.21 nmol m−2 s−1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.

74 citations


Journal ArticleDOI
TL;DR: A revised paradigm is built on the strength of high-quality time-series observations, on insights from the application of state-of-the-art –omics techniques and, more recently, the discoveries of novel microorganisms and metabolic processes.
Abstract: The North Pacific Subtropical Gyre (NPSG) is one of the largest biomes on Earth. It has a semi-enclosed surface area of about 2 × 107 km2 and mean depth of nearly 5 km and includes a broad range of habitats from warm, light-saturated, nutrient-starved surface waters to the cold, nutrient-rich abyss. Microorganisms are found throughout the water column and are vertically stratified by their genetically determined metabolic capabilities that establish physiological tolerances to temperature, light, pressure, as well as organic and inorganic growth substrates. Despite the global significance of the NPSG for energy and matter transformations and its role in the oceanic carbon cycle, it is grossly undersampled and not well characterized with respect to ecosystem structure and dynamics. Since October 1988, interdisciplinary teams of scientists from the University of Hawaii and around the world have been investigating the NPSG ecosystem at Station ALOHA (A Long-term Oligotrophic Habitat Assessment), a site chosen to be representative of this expansive oligotrophic habitat, with a focus on microbial processes and biogeochemistry. At the start of this comprehensive field study, the NPSG was thought to be a “Climax” community with a relatively stable plankton community structure and relatively low variability in key microbiological rates and processes. Now, after nearly three decades of observations and experimentation we present a new view of this old ocean, one that highlights temporal variability in ecosystem processes across a broad range of scales from diel to decadal and beyond. Our revised paradigm is built on the strength of high-quality time-series observations, on insights from the application of state-of-the-art –omics techniques (genomics, transcriptomics, proteomics and metabolomics) and, more recently, the discoveries of novel microorganisms and metabolic processes. Collectively, these efforts have led to a new understanding of trophic dynamics and population interactions in the NPSG. A comprehensive understanding of the environmental controls on microbial rates and processes, from genomes to biomes, will be required to inform the scientific community and the public at large about the potential impacts of human-induced climate change. The pace of new discovery, and the importance of integrating this new knowledge into conceptual paradigms and predictive models, is an enormous contemporary challenge with great scientific and societal relevance.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore the interaction between hydrology and the reactivity of allochthonous dissolved organic carbon (DOCalloch) in determining the potential of DOCalloch to generate CO2 through biological and photo-chemical mineralization in boreal lakes.
Abstract: Here, we explore the interaction between hydrology and the reactivity of allochthonous dissolved organic carbon (DOCalloch) in determining the potential of DOCalloch to generate CO2 through biological and photo-chemical mineralization in boreal lakes We developed a mechanistic model that integrates the reactivity continuum (RC) concept to reconstruct in-lake mineralization of DOCalloch under variable hydrologic conditions using empirical measurements of DOCalloch concentrations and reactivity as model inputs The model predicts lake DOCalloch concentration (L-DOCalloch) and its average overall reactivity $$ \left( {\bar{K}_{\text{alloch}} } \right) $$ , which integrates the distribution of DOCalloch ages within the lake as a function of the DOC loading (DOCin), the initial reactivity of this DOCin (k 0), and the lake water residence time (WRT) The modeled DOCalloch mineralization rates and concentrations were in agreement with expectations based on observed and published values of ambient lake DOC concentrations and reactivity Results from this modeling exercise reveal that the interaction between WRT and k 0 is a key determinant of the ambient concentration and reactivity of lake DOCalloch, which represents the bulk of DOC in most of these lakes The steady-state $$ \left( {\bar{K}_{\text{alloch}} } \right) $$ also represents the proportion of CO2 that can be extracted from DOCalloch during its transit through lakes, and partly explains the patterns in surface water pCO2 oversaturation that have been observed across gradients of lake size and volume We estimate that in-lake DOCalloch mineralization could potentially contribute on average 30–40% of the observed surface carbon dioxide partial pressure (pCO2) across northern lakes Applying the RC framework to in-lake DOCalloch dynamics improves our understanding of DOCalloch transformation and fate along the aquatic network, and results in a predictable mosaic of DOC reactivity and potential CO2 emissions across lakes within a landscape

67 citations


Journal ArticleDOI
TL;DR: A new paradigm of cross-disciplinary training and professional evaluation is needed to increase the human capital to fully exploit big-data analytics in a way that is sustainable and adaptable to emerging disciplinary needs.
Abstract: Ecosystem scientists will increasingly be called on to inform forecasts and define uncertainty about how changing planet conditions affect human well-being. We should be prepared to leverage the best tools available, including big data. Use of the term ‘big data’ implies an approach that includes capacity to aggregate, search, cross-reference, and mine large volumes of data to generate new understanding that can inform decision-making about emergent properties of complex systems. Although big-data approaches are not a panacea, there are large-scale environmental questions for which big data are well suited, even necessary. Ecosystems are complex biophysical systems that are not easily defined by any one data type, location, or time. Understanding complex ecosystem properties is data intensive along axes of volume (size of data), velocity (frequency of data), and variety (diversity of data types). Ecosystem scientists have employed impressive technology for generating high-frequency, large-volume data streams. Yet important challenges remain in both theoretical and infrastructural development to support visualization and analysis of large and diverse data. The way forward includes greater support for network science approaches, and for development of big-data infrastructure that includes capacity for visualization and analysis of integrated data products. Likewise, a new paradigm of cross-disciplinary training and professional evaluation is needed to increase the human capital to fully exploit big-data analytics in a way that is sustainable and adaptable to emerging disciplinary needs.

Journal ArticleDOI
TL;DR: In this paper, the authors argue that there are two critical challenges for ecosystem science that are rooted in urban ecosystems: predicting or explaining the assembly and function of novel communities and ecosystems under altered environmental conditions and refining understanding of humans as components of ecosystems in the context of integrated social-ecological systems.
Abstract: Research on urban ecosystems rapidly expanded in the 1990s and is now a central topic in ecosystem science. In this paper, we argue that there are two critical challenges for ecosystem science that are rooted in urban ecosystems: (1) predicting or explaining the assembly and function of novel communities and ecosystems under altered environmental conditions and (2) refining understanding of humans as components of ecosystems in the context of integrated social-ecological systems. We assert that these challenges are also linchpins in the further development of sustainability science and argue that there is a strong need for a new initiative in urban systems science to address these challenges and catalyze the next wave of fundamental advances in ecosystem science, and more broadly in interdisciplinary and transdisciplinary science.

Journal ArticleDOI
TL;DR: A review of recent trends and emerging ideas in spatial resilience, using coral reefs and dependent communities as exemplars of multi-scale social-ecological systems can be found in this article.
Abstract: The concept of spatial resilience has brought a new focus on the influence of multi-scale processes on the dynamics of ecosystems. Initial ideas about spatial resilience focused on coral reefs and emphasized escalating anthropogenic disturbances across the broader seascape. This perspective resonated with a new awareness of global drivers of change, such as growth in international trade and shifts in climate, and the need to respond by scaling up governance and management. We review recent trends and emerging ideas in spatial resilience, using coral reefs and dependent communities as exemplars of multi-scale social–ecological systems. Despite recent advances, management and governance of ecosystems remain spatially fragmented and constrained to small scales. Temporally, many interventions still miss or ignore warning signals and struggle to cope with history, politics, long-term cumulative pressures, feedbacks, and sudden surprises. Significant recent progress has been made in understanding the relevance of spatial and temporal scale, heterogeneity, networks, the importance of place, and multi-scale governance. Emerging themes include better integration of ecology and conservation with social and economic science, and incorporating temporal dynamics in spatial analyses. A better understanding of the multi-scale spatial and temporal processes that drive the resilience of linked social-ecosystems will help address the widespread mismatch between the scales of ongoing ecological change and effective long-term governance of land- and seascapes.

Journal ArticleDOI
TL;DR: In this paper, the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA was investigated using a suite of numerical models, including Agro-IBIS, a terrestrial ecosystem model, THMB, a hydrologic and nutrient routing model, and a Yahara Water Quality Model which estimates water quality indicators in Yahara chain of lakes.
Abstract: Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha−1) varied by −41 to +22%, P load (kg y−1) by −35 to +14%, summer total P (TP) concentration (mg l−1) by −25 to +12%, Secchi depth (m) by −7 to +3%, and the probability of hypereutrophy by −67 to +34%, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on three critical challenges in ecosystem service science that must be addressed to better understand, forecast, and manage ecosystem services, including nonlinearities, feedbacks, and legacies in the sustainable and resilient provision of ecosystem services.
Abstract: How are ecosystem services conceptualized, analyzed, and forecast into the future? How can ecosystem service science be advanced to improve environmental decision-making at all scales? In this paper, I focus on three critical challenges in ecosystem service science that must be addressed to better understand, forecast, and manage ecosystem services. These include (1) understanding the role of nonlinearities, feedbacks, and legacies in the sustainable and resilient provision of ecosystem services; (2) understanding the role and interplay of ecological and social components in the provision of ecosystem services; and (3) employing stakeholder knowledge in co-designing research that better addresses decision-makers’ most pressing questions. Addressing these three challenges will advance ecosystem science and improve the use of ecosystem services in understanding and managing ecosystems.

Journal ArticleDOI
TL;DR: It is argued that ecosystem scientists today need to address a number of critical challenges and devote new energy and expertise to Modeling the Anthropocene, Operationalizing resilience, and Understanding social-ecological dynamics across scales.
Abstract: Marine ecosystem science has developed since the 1940s, when humans obtained the ability to spend substantial time underneath the surface of the ocean. Since then, and drawing on several decades of scientific advances, a number of exciting research frontiers have emerged. We find: Understanding interacting drivers of change, Identifying thresholds in ecosystems, and Investigating social-ecological dynamics to represent particularly interesting frontiers, which we speculate will soon emerge as new mainstreams in marine ecosystem science. However, increasing human impacts on ecosystems everywhere and a new level of global connectivity are shifting the context for studying, understanding, and managing marine ecosystems. As a consequence, we argue that ecosystem scientists today also need to address a number of critical challenges and devote new energy and expertise to Modeling the Anthropocene, Operationalizing resilience, and Understanding social-ecological dynamics across scales. This new deep dive into unknown waters requires a number of strategies to be successful. We suggest that marine ecosystem scientists need to actively: Prepare for the unexpected, cross boundaries, and understand our cognitive limitations to further develop the exciting field of marine ecosystem science.

Journal ArticleDOI
TL;DR: Differences among rivers in relative food source availability resulting from contrasting hydrogeomorphic complexity may account for relative proportions of amino acids derived from algae.
Abstract: A nearly 40-year debate on the origins of carbon supporting animal production in lotic systems has spawned numerous conceptual theories emphasizing the importance of autochthonous carbon, terrestrial carbon, or both (depending on river stage height). Testing theories has been hampered by lack of adequate analytical methods to distinguish in consumer tissue between ultimate autochthonous and allochthonous carbon. Investigators initially relied on assimilation efficiencies of gut contents and later on bulk tissue stable isotope analysis or fatty acid methods. The newest technique in amino acid, compound specific, stable isotope analysis (AA-CSIA), however, enables investigators to link consumers to food sources by tracing essential amino acids from producers to consumers. We used AA-CSIA to evaluate nutrient sources for 5 invertivorous and 6 piscivorous species in 2 hydrogeomorphically contrasting large rivers: the anastomosing Upper Mississippi River (UMR) and the mostly constricted lower Ohio River (LOR). Museum specimens we analyzed isotopically had been collected by other investigators over many decades (UMR: 1900–1969; LOR: 1931–1970). Our results demonstrate that on average algae contributed 58.5% (LOR) to 75.6% (UMR) of fish diets. The next highest estimated contributions of food sources were from C3 terrestrial plants (21.1 and 11.5% for the LOR and UMR, respectively). Moreover, results from 11 individually examined species consistently demonstrated the importance of algae for most fish species in these trophic guilds. Differences among rivers in relative food source availability resulting from contrasting hydrogeomorphic complexity may account for relative proportions of amino acids derived from algae.

Journal ArticleDOI
TL;DR: In this paper, the authors report results from a 3-year warming experiment using open top chambers (OTC) on the Tibetan Plateau meadow grassland, showing that Warming significantly increased C uptake through gross primary productivity (GPP) but not ecosystem respiration (ER), resulting in a 31.0% reduction in net ecosystem exchange in warmed plots.
Abstract: Despite the importance of future carbon (C) pools for policy and land management decisions under various climate change scenarios, predictions of these pools under altered climate vary considerably. Chronic warming will likely impact both ecosystem C fluxes and the abundance and distribution of plant functional types (PFTs) within systems, potentially interacting to create novel patterns of C exchange. Here, we report results from a 3-year warming experiment using open top chambers (OTC) on the Tibetan Plateau meadow grassland. Warming significantly increased C uptake through gross primary productivity (GPP) but not ecosystem respiration (ER), resulting in a 31.0% reduction in net ecosystem exchange (NEE) in warmed plots. The OTC-induced changes in ecosystem C fluxes were not fully explained by the corresponding changes in soil temperature and moisture. Warming treatments significantly increased the biomass of graminoids and legumes by 12.9 and 27.6%. These functional shifts were correlated with enhanced local GPP, but not ER, resulting in more negative NEE in plots with larger increases in graminoid and legume biomass. This may be due to a link between greater legume abundance and higher levels of total inorganic nitrogen, which can potentially drive higher GPP, but not higher ER. Overall, our results indicate that C-climate feedbacks might be closely mediated by climate-induced changes in PFTs. This highlights the need to consider the impacts of changes in PFTs when predicting future responses of C pools under altered climate scenarios.

Journal ArticleDOI
TL;DR: In this paper, an exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake.
Abstract: Climate forecasts project a global increase in extreme weather events, but information on the consequences for ecosystems is scarce. Of particular significance for lakes are severe storms that can influence biogeochemical processes and biological communities by disrupting the vertical thermal structure during periods of stratification. An exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake. Wind speeds were among the most extreme on record. A suite of variables measured throughout the event consistently indicates that a cascade of processes pushed the clear-water lake into an exceptionally turbid state. Specifically, thermocline deepening by the storm-entrained cyanobacteria of a deep chlorophyll maximum located at about 8 m depth into the surface mixed layer. Released from light limitation, intense photosynthesis of the cyanobacteria boosted primary production, increased algal biomass, raised the pH and thus induced massive calcite precipitation to a level never observed within three decades of lake monitoring. As a consequence, water transparency dropped from 6.5 to 2.1 m, the minimum on record for 40 years, and the euphotic zone shrank by about 8 m for several weeks. These results show that cyanobacterial blooms not only are promoted by climate warming, but can also be triggered by extreme storms. Clear-water lakes developing a deep chlorophyll maximum appear to be particularly at risk in the future, if such events become more intense or frequent.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the dynamics of four Pyrenean mountain pine treeline sites with contrasting stand structures, and subjected to differing rates of climate warming, finding that treelines characterized by a multistratified stand structure were the most responsive to climate warming.
Abstract: Alpine treeline ecotones are considered early-warning monitors of the effects of climate change on terrestrial ecosystems, but it is still unclear how accurately treeline dynamics may track the expected temperature rises. Site-specific abiotic constraints, such as topography and demographic trends may make treelines less responsive to environmental fluctuations. A better understanding on how local processes modulate treelines’ response to warming is thus required. We developed a model of treeline dynamics based on individual data of growth, mortality and reproduction. Specifically, we modeled growth patterns, mortality rates and reproductive size thresholds as a function of temperature and stand structure to evaluate the influence of climate- and stand-related processes on treeline dynamics. In this study, we analyze the dynamics of four Pyrenean mountain pine treeline sites with contrasting stand structures, and subjected to differing rates of climate warming. Our models indicate that Pyrenean treelines could reach basal areas and reproductive potentials similar to those currently observed in high-elevation subalpine forest by the mid twenty-first century. The fastest paces of treeline densification are forecasted by the late twenty-first century and are associated with higher warming rates. We found a common densification response of Pyrenean treelines to climate warming, but contrasting paces arise due to current size structures. Treelines characterized by a multistratified stand structure and subjected to lower mean annual temperatures were the most responsive to climate warming. In monostratified stands, tree growth was less sensitive to temperature than in multistratified stands and trees reached their reproductive size threshold later. Therefore, our simulations highlight that stand structure is paramount in modulating treeline responsiveness to ongoing climate warming. Synthesis. Treeline densification over the twenty-first century is likely to occur at different rates contingent on current stand structure and its effects on individual-level tree growth responses to warming. Accurate projections of future treeline dynamics must thus incorporate site-specific factors other than climate, specifically those related to stand structure and its influence on tree growth.

Journal ArticleDOI
TL;DR: The authors examined the dynamics of litterfall production associated with stand development, overstory composition type (broadleaf, mixedwood, and conifer), and disturbance origin in boreal forest ecosystems.
Abstract: Litterfall is a fundamental process in the nutrient cycle of forest ecosystems and a major component of annual net primary production (NPP). Despite its importance for understanding ecosystem energetics and carbon accounting, the dynamics of litterfall production following disturbance and throughout succession remain poorly understood in boreal forest ecosystems. Using a replicated chronosequence spanning 209 years following fire and 33 years following logging in Ontario, Canada, we examined the dynamics of litterfall production associated with stand development, overstory composition type (broadleaf, mixedwood, and conifer), and disturbance origin. We found that total annual litterfall production increased with stand age following fire and logging, plateauing in post-fire stands approximately 98 years after fire. Neither total annual litterfall production nor any of its constituents differed between young fire- or logging-originated stands. Litterfall production was generally higher in broadleaf stands compared with mixedwood and conifer stands, but varied seasonally, with foliar litterfall highest in broadleaf stands in autumn, and epiphytic lichen litterfall highest in conifer stands in spring. Contrary to previous assumptions, we found that the contribution of litterfall production to net primary production increased with stand age, highlighting the need for modeling studies of net primary productivity to account for the effects of stand age on litterfall dynamics.

Journal ArticleDOI
TL;DR: In this article, a small set of basic ecological concepts underpins tropical river-floodplain ecosystems, especially the high levels of productivity, biodiversity and natural resilience, are discussed.
Abstract: Flow regimes are fundamental to sustaining ecological characteristics of rivers worldwide, including their associated floodplains. Recent advances in understanding tropical river–floodplain ecosystems suggest that a small set of basic ecological concepts underpins their biophysical characteristics, especially the high levels of productivity, biodiversity and natural resilience. The concepts relate to (1) river-specific flow patterns, (2) processes ‘fuelled’ by a complex of locally generated carbon and nutrients seasonally mixed with carbon and nutrients from floodplains and catchments, (3) seasonal movements of biota facilitated by flood regimes, (4) food webs and overall productivity sustained by hydrological connectivity, (5) fires in the wet/dry tropical floodplains and riparian zones being major consumers of carbon and a key factor in the subsequent redistribution of nutrients, and (6) river–floodplains having inherent resilience to natural variability but only limited resilience to artificial modifications. Understanding these concepts is particularly timely in anticipating the effects of impending development that may affect tropical river–floodplains at the global scale. Australia, a region encompassing some of the last relatively undisturbed tropical riverine landscapes in the world, provides a valuable case study for understanding the productivity, diversity and resilience of tropical river–floodplain systems. However, significant knowledge gaps remain. Despite substantial recent advances in understanding, present knowledge of these highly complex tropical rivers is insufficient to predict many ecological responses to either human-generated or climate-related changes. The major research challenges identified herein (for example, those related to food web structure, nutrient transfers, productivity, connectivity and resilience), if accomplished in the next decade, will offer substantial insights toward assessing and managing ecological changes associated with human alterations to rivers and their catchments.

Journal ArticleDOI
TL;DR: In this paper, the effect of macrofaunal community composition on denitrification in response to two levels of nutrient enrichment at 28 sites across a biologically heterogeneous sandflat was investigated.
Abstract: The degradation of ecosystems is often associated with losses of large organisms and the concomitant losses of the ecological functions they mediate. Conversely, the resilience of ecosystems to stress is strongly influenced by faunal communities and their impacts on processes. Denitrification in coastal sediments is a process that may provide ecosystem resilience to eutrophication by removing excess bioavailable nitrogen. Here, we conducted a large-scale field experiment to test the effect of macrofaunal community composition on denitrification in response to two levels of nutrient enrichment at 28 sites across a biologically heterogeneous sandflat. After 7 weeks of enrichment, we measured denitrification enzyme activity (DEA) along with benthic macrofaunal community composition and environmental variables. We normalised treatment site specific DEA values by those in ambient sediments (DEACN) to reveal the underlying response across the heterogeneous landscape. Nutrient enrichment caused reductions in DEACN as well as functional changes in the community; these were both more pronounced under the highest level of nutrient loading (on average DEACN was reduced by 34%). The degree of suppression of DEACN following moderate nitrogen loading was mitigated by a key bioturbating species, but following high nitrogen loading (which reduced the key species density) the abundance and diversity of other nutrient processing species were the most important factors alleviating negative effects. This study provides a prime example of the context-dependent role of biodiversity in maintaining ecosystem functioning, underlining that different elements of biodiversity can become important as stress levels increase. Our results emphasise that management and conservation strategies require a real-world understanding of the community attributes that facilitate nutrient processing and maintain resilience in coastal ecosystems.

Journal ArticleDOI
TL;DR: In this article, the authors used a series of nutrient-diffusing substrates (NDS) bioassays deployed across a range of light availability conditions in a single-study stream over two summers to determine the light level at which the limiting factor for benthic periphyton accrual transitioned from light to nutrients.
Abstract: Colimitation of primary production is increasingly recognized as a dominant process across aquatic and terrestrial ecosystems. In streams, both nutrient availability and light availability have been shown to independently limit primary production, but colimitation by both light and nutrients is rarely considered. We used a series of nutrient-diffusing substrates (NDS) bioassays deployed across a range of light availability conditions in a single-study stream over two summers to determine the light level at which the limiting factor for benthic periphyton accrual transitioned from light to nutrients. Stream periphyton accrual was nutrient-limited in high-light patches, and light-limited in low-light patches, with the transition from being predominantly light-limited to being predominantly nutrient-limited occurring when daily light fluxes exceeded 3.5 mol m−2 day−1. We quantified light at each NDS bioassay location and at 5 m intervals throughout our two adjacent 160 m study reaches—one in structurally complex old-growth riparian forest and one bordered by more uniform second-growth forest. Although both reaches were colimited overall, the resource (light or nutrients) dominating limitation differed between the two riparian forest age/structure conditions. In the old-growth section, about three quarters of the reach was predominantly nutrient-limited, whereas in the second-growth reach only about a quarter of the streambed was nutrient-limited. In this stream, colimitation of benthic periphyton accrual by light and nutrients at the reach scale was an emergent property of the ecosystem that manifested as a result of high heterogeneity in riparian forest structure.

Journal ArticleDOI
TL;DR: In this paper, the authors compared tree-ring chronologies and the climate sensitivity of growth (MS) in 11 mature beech stands along a precipitation gradient (855 −576 −1) on two soil types with contrasting water storage capacity (WSC) in northwest Germany to test the hypotheses that recent warming is impairing beech growth also in the center of its distribution below a certain precipitation limit.
Abstract: Increasing summer droughts represent a major threat for the vitality and productivity of forests in the temperate zone. European beech, the most important tree species of Central Europe’s natural forest vegetation, is known to suffer from increased drought intensity at its southern distribution limits, but it is not well known how this species is affected in the center of its distribution range in a sub-oceanic climate. We compared tree-ring chronologies and the climate sensitivity of growth (MS) in 11 mature beech stands along a precipitation gradient (855–576 mm y−1) on two soil types with contrasting water storage capacity (WSC) in northwest Germany to test the hypotheses that recent warming is impairing beech growth also in the center of its distribution below a certain precipitation limit, and stands with low soil WSC are more susceptible. We found a threshold of about 350 mm of mean growing season precipitation below which basal area increment (BAI) showed a consistent decline since the 1970s. The frequency of negative pointer years and MS were highest in low-precipitation stands on sandy soil, but both parameters have increased during the last decades also in the moister stands. The factor with largest impact on BAI was precipitation in June, in combination with high mid-summer temperatures. Contrary to our hypothesis, the edaphic effect on growth dynamics was surprisingly small. We conclude that global warming-related growth decline is affecting European beech even in the center of its distribution below a hydrological threshold that is mainly determined by mid-summer rainfall.

Journal ArticleDOI
TL;DR: In this article, the authors make the case that LUNEs have had a disproportionately positive effect on conservation policy and are a crucial next step in the extrapolation of our understanding of ecological processes from small-scale experiments to relevant scales, particularly in the context of the current "replication crisis" affecting many sciences.
Abstract: Large-scale, unreplicated natural experiments (LUNEs) have a unique power to test hypotheses at ecologically realistic scales and have delivered insights of great power into cosmology, evolution and geology. Yet, LUNEs are relatively rare in the field of ecology and continue to meet resistance due to their lack of replication. However, in the vast majority of cases, large-scale experiments cannot be replicated for practical and ethical reasons. Here, we make the case that LUNEs have had a disproportionately positive effect on conservation policy and are a crucial next step in the extrapolation of our understanding of ecological processes from small-scale experiments to relevant scales, particularly in the context of the current “replication crisis” affecting many sciences. Greater inclusion of LUNEs in mainstream ecology will help humanity to solve global problems as human transformation of the planet accelerates in coming decades.

Journal ArticleDOI
TL;DR: In this paper, the authors examined how extreme precipitation events affect exports of terrestrial dissolved organic carbon (t-DOC) from watersheds to lakes as well as in-lake heterotrophy in three north-temperate lakes.
Abstract: The frequency and magnitude of extreme events are expected to increase in the future, yet little is known about effects of such events on ecosystem structure and function. We examined how extreme precipitation events affect exports of terrestrial dissolved organic carbon (t-DOC) from watersheds to lakes as well as in-lake heterotrophy in three north-temperate lakes. Extreme precipitation events induced large influxes of t-DOC to our lakes, accounting for 45–58% of the seasonal t-DOC load. These large influxes of t-DOC influenced lake metabolism, resulting in lake net heterotrophy following 67% of the extreme precipitation events across all lakes. Hydrologic residence time (HRT) was negatively related to t-DOC load and heterotrophy; lakes with short HRT had higher t-DOC loads and greater net heterotrophy. The fraction of t-DOC mineralized within each lake following extreme precipitation events generally exhibited a positive relationship with lake HRT, similar to the previous studies of fractions mineralized at annual and supra-annual time scales. Event-associated turnover rate of t-DOC was higher than what is typically reported from laboratory studies and modeling exercises and was also negatively related to lake HRT. This study demonstrates that extreme precipitation events are ‘hot moments’ of carbon load, export, and turnover in lakes and that lake-specific characteristics (for example, HRT) interact with climatic patterns to set rates of important lake carbon fluxes.

Journal ArticleDOI
TL;DR: In this article, the effects of rain-out shelters on plant responses to extreme drought events were investigated in a long-term semi-natural grassland experiment and artifacts of rainout shelters were found to have a negative effect on plant performance.
Abstract: Extreme drought events challenge ecosystem functioning. Ecological response to drought is studied worldwide in a growing number of field experiments by rain-out shelters. Yet, few meta-analyses face severe challenges in the comparability of studies. This is partly because build-up of drought stress in rain-out shelters is modified by ambient weather conditions. Rain-out shelters can further create confounding effects (radiation, temperature), which may influence plant responses. Yet, a quantification of ecophysiological effects within rain-out shelters under opposing ambient weather conditions and of microclimatological artifacts is missing. Here, we examined phytometers—standardized potted individuals of Plantago lanceolata—under rain-out shelter, rain-out shelter artifact control, and ambient control during opposing outside microclimatological conditions. Furthermore, we tested for artifacts of rain-out shelters on plant responses in a long-term semi-natural grassland experiment. Phytometer plants below the rain-out shelters showed lower stomatal conductance, maximum quantum efficiency, and leaf water potential during warm ambient conditions with high evaporative demand than during cold conditions with low evaporative demand. Plant performance was highly correlated with ambient temperature and vapor pressure deficit (VPD). Rain-out shelter artifacts on plant responses were nonsignificant. Rain-out shelters remain a viable tool for studying ecosystem responses to drought. However, drought manipulations using rain-out shelters are strongly modified by ambient weather conditions. Attributing the results from rain-out shelter studies to drought effects and comparability among studies and study years therefore requires the quantification of the realized drought stress, for example, by relating ecosystem responses to measured microclimatological parameters such as air temperature and VPD.

Journal ArticleDOI
TL;DR: In this paper, the authors quantify how multi-decadal manipulations of water table (WT) levels affected carbon cycling (plant production and net ecosystem exchange from three eddy covariance towers) in a peatland complex modified by levee construction.
Abstract: Globally, peatlands store a large quantity of soil carbon that can be subsequently modified by hydrologic alterations from land-use change and climate change. However, there are many uncertainties in predicting how carbon cycling and greenhouse gas emissions are altered by long-term changes in hydrology. Therefore, the goal of this study was to quantify how multi-decadal manipulations of water table (WT) levels affected carbon cycling (plant production and net ecosystem exchange from three eddy covariance towers) in a peatland complex modified by levee construction, which created a wetter area up-gradient of the levee (mean WT was 12.1 cm below the surface), a dry area below the levee (36.8 cm), and an adjacent reference site not affected by the levee (21.6 cm). We found that mean total plant production was greatest in the reference site (311.9 g C m−2 y−1), followed by the dry site (290.5 g C m−2 y−1), and lowest in the wet site (227.1 g C m−2 y−1). Net ecosystem exchange during the growing season was negative for all sites (sink), with the wet site having the greatest sink and the dry site having the lowest sink. Ecosystem respiration increased and CH4 emissions decreased with a decreasing WT level. This research demonstrates that human alteration of peatland WT levels can have long-term (>50 years) consequences on peatland carbon cycling.

Journal ArticleDOI
TL;DR: It is argued that the division between “field ecologists” and “modelers” should be abandoned, and modeling and empirical research are embraced as two powerful and often complementary approaches in the toolbox of 21st century ecologists, to be deployed alone or in combination depending on the task at hand.
Abstract: Here, I argue that we should abandon the division between "field ecologists" and "modelers," and embrace modeling and empirical research as two powerful and often complementary approaches in the toolbox of 21st century ecologists, to be deployed alone or in combination depending on the task at hand. As empirical research has the longer tradition in ecology, and modeling is the more recent addition to the methodological arsenal, I provide both practical and theoretical reasons for integrating modeling more deeply into ecosystem research. Empirical research has epistemological priority over modeling; however, that is, for models to realize their full potential, and for modelers to wield this power wisely, empirical research is of fundamental importance. Combining both methodological approaches or forming "super ties" with colleagues using different methods are promising pathways to creatively exploit the methodological possibilities resulting from increasing computing power. To improve the proficiency of the growing group of model users and ensure future innovation in model development, we need to increase the modeling literacy among ecology students. However, an improved training in modeling must not curtail education in basic ecological principles and field methods, as these skills form the foundation for building and applying models in ecology.