scispace - formally typeset
Search or ask a question

Showing papers in "Environmental and Molecular Mutagenesis in 2009"


Journal ArticleDOI
TL;DR: This review presents also other little known aspects of molecular action of garlic‐derived compounds, like modulation of cellular redox state, involvement in signal transduction and post‐translational modification of proteins by sulfane sulfur or by formation of mixed disulfides (S‐thiolation reactions).
Abstract: Medicinal properties of garlic (Allium sativum) have been widely known and used since ancient times till the present. Garlic enhances immune functions and has antibacterial, antifungal and antivirus activities. It is known to prevent platelet aggregation, and to have hypotensive and cholesterol- and triglyceride-lowering properties, although the latter features have been questioned. This review is focused on anticancer efficacy of Allium sativum, and attempts to explain the mechanisms of this action. Medicinal properties of garlic rely upon organosulfur compounds mostly derived from alliin. Organosulfur compounds originating from garlic inhibit carcinogen activation, boost phase 2 detoxifying processes, cause cell cycle arrest mostly in G2/M phase, stimulate the mitochondrial apoptotic pathway, increase acetylation of histones. Garlic-derived sulfur compounds influence also gap-junctional intercellular communication and participate in the development of multidrug resistance. This review presents also other little known aspects of molecular action of garlic-derived compounds, like modulation of cellular redox state, involvement in signal transduction and post-translational modification of proteins by sulfane sulfur or by formation of mixed disulfides (S-thiolation reactions).

381 citations


Journal ArticleDOI
TL;DR: The results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention.
Abstract: Histone deacetylase (HDAC) inhibitors reactivate epigenetically-silenced genes in cancer cells, triggering cell cycle arrest and apoptosis. Recent evidence suggests that dietary constituents can act as HDAC inhibitors, such as the isothiocyanates found in cruciferous vegetables and the allyl compounds present in garlic. Broccoli sprouts are a rich source of sulforaphane (SFN), an isothiocyanate that is metabolized via the mercapturic acid pathway and inhibits HDAC activity in human colon, prostate, and breast cancer cells. In mouse preclinical models, SFN inhibited HDAC activity and induced histone hyperacetylation coincident with tumor suppression. Inhibition of HDAC activity also was observed in circulating peripheral blood mononuclear cells obtained from people who consumed a single serving of broccoli sprouts. Garlic organosulfur compounds can be metabolized to allyl mercaptan (AM), a competitive HDAC inhibitor that induced rapid and sustained histone hyperacetylation in human colon cancer cells. Inhibition of HDAC activity by AM was associated with increased histone acetylation and Sp3 transcription factor binding to the promoter region of the P21WAF1 gene, resulting in elevated p21 protein expression and cell cycle arrest. Collectively, the results from these studies, and others reviewed herein, provide new insights into the relationships between reversible histone modifications, diet, and cancer chemoprevention.

183 citations


Journal ArticleDOI
TL;DR: These results are the first to report disruption of the mitotic spindle by single‐walled carbon nanotubes, and the nanotube bundles are similar to the size of microtubules that form the mitotics and may be incorporated into the mitosis spindle apparatus.
Abstract: Engineered carbon nanotubes are newly emerging manufactured particles with potential applications in electronics, computers, aerospace, and medicine. The low density and small size of these biologically persistent particles makes respiratory exposures to workers likely during the production or use of commercial products. The narrow diameter and great length of single-walled carbon nanotubes (SWCNT) suggest the potential to interact with critical biological structures. To examine the potential of nanotubes to induce genetic damage in normal lung cells, cultured primary and immortalized human airway epithelial cells were exposed to SWCNT or a positive control, vanadium pentoxide. After 24 hr of exposure to either SWCNT or vanadium pentoxide, fragmented centrosomes, multiple mitotic spindle poles, anaphase bridges, and aneuploid chromosome number were observed. Confocal microscopy demonstrated nanotubes within the nucleus that were in association with cellular and mitotic tubulin as well as the chromatin. Our results are the first to report disruption of the mitotic spindle by SWCNT. The nanotube bundles are similar to the size of microtubules that form the mitotic spindle and may be incorporated into the mitotic spindle apparatus.

167 citations


Journal ArticleDOI
TL;DR: The results confirm the involvement of metabolic activation of CYN in mediating its toxicity and suggest that CYN is progenotoxic.
Abstract: Cylindrospermopsin (CYN), a cyanotoxin produced by certain freshwater cyanobacteria, causes human intoxications and animal mortalities. CYN is a potent inhibitor of protein- and glutathione-synthesis. Preliminary evidence for in vivo tumor initiation has been found in mice but the mechanism remains unclear. Several in vitro and in vivo studies demonstrate that CYN is genotoxic and requires metabolic activation. In the present study, the genotoxicity of CYN was assessed in human hepatocyte and enterocyte cell lines, which are models for CYN target organs. The cytokinesis-block micronucleus assay was conducted on liver-derived HepaRG cells and colon-derived Caco-2 cells. Each cell-type was exposed to CYN in both the differentiated and the undifferentiated states, and both with and without the cytochrome P450 inhibitor, ketoconazole, to determine the involvement of metabolism in CYN genotoxicity. CYN increased the frequency of micronuclei in binucleated cells (MNBNC) in both Caco-2 and HepaRG cells. Moreover, ketoconazole reduced both the genotoxicity and cytotoxicity caused by CYN. Our results confirm the involvement of metabolic activation of CYN in mediating its toxicity and suggest that CYN is progenotoxic.

126 citations


Journal ArticleDOI
TL;DR: It is shown that IR‐induced epigenetic bystander effects that occur in the same organism are triggered by both acute and fractionated exposure and are very distinct in different bystander organs.
Abstract: Exposure of animal body parts to ionizing radiation (IR) can lead to molecular changes in distant shielded "bystander" tissues and organs Nevertheless, tissue specificity of bystander responses within the same organism has not been examined in detail Studies on in vivo bystander effect conducted so far analyzed changes induced by single-dose exposure The potential of fractionated irradiation to induce bystander effects in vivo has never been studied We analyzed changes in global DNA methylation and microRNAome in skin and spleen of animals subjected to single-dose (acute or fractionated) whole-body or cranial exposure to 05 Gy of X-rays We found that IR-induced DNA methylation changes in bystander spleen and skin were distinct Acute radiation exposure resulted in a significant loss of global DNA methylation in the exposed and bystander spleen 6 hr, 96 hr, and 14 days after irradiation Fractionated irradiation led to hypomethylation in bystander spleen 6 hr after whole-body exposure, and 6 hr, 96 hr, and 14 days after cranial irradiation Contrarily, changes in the skin of the same animals were seen only 6 hr after acute whole-body and head exposure DNA hypomethylation observed in spleen was paralleled by a reduction of methyl-binding protein MeCP2 expression Irradiation also induced tissue-specific microRNAome alterations in skin and spleen For the first time, we have shown that IR-induced epigenetic bystander effects that occur in the same organism are triggered by both acute and fractionated exposure and are very distinct in different bystander organs Future studies are clearly needed to address organismal and carcinogenic repercussions of those changes

116 citations


Journal ArticleDOI
TL;DR: A summary of the symposium at the Environmental Mutagen Society Meeting in 2008, which focused on the epidemiology of formaldehyde and leukemia, potential mechanisms, and implication for risk assessment, with emphasis on future directions in multidisciplinary formaldehyde research, is provided.
Abstract: Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging due to inconsistencies in human and animal studies and the lack of a known mechanism for leukemia induction. Here, we provide a summary of the symposium at the Environmental Mutagen Society Meeting in 2008, which focused on the epidemiology of formaldehyde and leukemia, potential mechanisms, and implication for risk assessment, with emphasis on future directions in multidisciplinary formaldehyde research. Updated results of two of the three largest industrial cohort studies of formaldehyde-exposed workers have shown positive associations with leukemia, particularly myeloid leukemia, and a recent meta-analysis of studies to date supports this association. Recent mechanistic studies have shown the formation of formaldehyde-induced DNA adducts and characterized the essential DNA repair pathways that mitigate formaldehyde toxicity. The implications of the updated findings for the design of future studies to more effectively assess the risk of leukemia arising from formaldehyde exposure were discussed and specific recommendations were made. A toxicogenomic approach in experimental models and human exposure studies, together with the measurement of biomarkers of internal exposure, such as formaldehyde-DNA and protein adducts, should prove fruitful. It was recognized that increased communication among scientists who perform epidemiology, toxicology, biology, and risk assessment could enhance the design of future studies, which could ultimately reduce uncertainty in the risk assessment of formaldehyde and leukemia.

104 citations


Journal ArticleDOI
TL;DR: The prevailing mechanisms for the antioxidant and pro‐oxidant activity of ITCs, both in vivo and in vitro are summarized and discussed.
Abstract: Isothiocyanates (ITCs) are breakdown products of glucosinolates contained in cruciciferous vegetables. This heterogeneous family of molecules has the -N=C=S group as its common structural feature and possesses important cytoprotective properties. Their biological interactions are strongly related to modulation of cellular redox status, and a number of studies have documented their indirect antioxidant properties, particularly related to induction of phase-2 enzymes. On the other hand, some direct antioxidant behavior has also been observed for a limited number of ITCs. Paradoxically relevant pro-oxidant properties have also been documented, possibly related to the simultaneous induction of phase-1 enzymes. In this review, we will summarize and discuss the prevailing mechanisms for the antioxidant and pro-oxidant activity of ITCs, both in vivo and in vitro.

89 citations


Journal ArticleDOI
TL;DR: The weight of evidence supports the plausibility that Cr (VI) may act through a mutagenic MOA and recommends a linear extrapolation for the oral risk assessment, as well as recommending that the ADAFs be applied.
Abstract: In response to the 2005 revised U.S Environmental Protection Agency's (EPA) Cancer Guidelines, a strategy is being developed to include all mutagenicity and other genotoxicity data with additional information to determine whether the initiating step in carcinogenesis is through a mutagenic mode of action (MOA). This information is necessary to decide if age-dependent adjustment factors (ADAFs) should be applied to the risk assessment. Chromium (VI) [Cr (VI)], a carcinogen in animals and humans via inhalation, was reassessed by the National Toxicology Program (NTP) in 2-year drinking water studies in rodents. From these data, NTP concluded that the results with Cr (VI) showed clear evidence of carcinogenicity in male and female mice and rats. Cr (VI) is also mutagenic, in numerous in vitro assays, in animals (mice and rats) and in humans. Accordingly, Cr (VI) was processed through the MOA framework; postulated key steps in tumor formation were interaction of DNA with Cr (VI) and reduction to Cr (III), mutagenesis, cell proliferation, and tumor formation. Within the timeframe and tumorigenic dose range for early events, genetic changes in mice (single/double-stranded DNA breaks) commence within 24 hr. Mechanistic evidence was also found for oxidative damage and DNA adduct formation contributing to the tumor response. The weight of evidence supports the plausibility that Cr (VI) may act through a mutagenic MOA. Therefore, the Cancer Guidelines recommend a linear extrapolation for the oral risk assessment. Cr (VI) also induces germ cell mutagenicity and causes DNA deletions in developing embryos; thus, it is recommended that the ADAFs be applied.

87 citations


Journal ArticleDOI
Ronald D. Snyder1
TL;DR: Supporting evidence is presented for the idea that the presence of an N‐dialkyl group or piperidine aryl ketone may somehow be associated with genotoxicity, perhaps through DNA intercalation and consequent DNA topoisomerase II inhibition.
Abstract: Information from the 1999 through 2008 Physicians' Desk Reference (PDR) was used to evaluate the genotoxicity of marketed drugs. Where available, data regarding the rodent carcinogenicity results were included (PDR and Gold potency database). In addition, computational predictivity of genotoxicity (DEREK, MC4PC) is included and expanded upon from two previous reviews. The present paper contains genotoxicity data on 545 marketed drugs. Excluded from analysis were most cytotoxic anti-cancer and antiviral drugs, nucleosides (all with known mechanistic genotoxicity), steroids with class-specific genotoxicity and biologicals or peptide-based drugs. Per assay type, the percentage of positive drugs was: Bacterial mutagenesis assay: 38/525 (7.1%), in vitro chromosome aberrations: 88/380 (26.1%); mouse lymphoma assays (MLA): 32/163 (19.1%), in vivo cytogenetics: 49/438 (11.1%). The relationship among positive genetic toxicity findings, rodent carcinogenicity, and in silico prediction is discussed. Finally, supporting evidence is presented for the idea that the presence of an N-dialkyl group or piperidine aryl ketone may somehow be associated with genotoxicity, perhaps through DNA intercalation and consequent DNA topoisomerase II inhibition. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc.

83 citations


Journal ArticleDOI
TL;DR: This review has addressed the cytotoxic effects of benzene and its main metabolite, catechol, focusing on the oxidative pathway and further DNA damage.
Abstract: Benzene is a widespread volatile compound and an environmental contaminant. Since it causes important toxic effects in workers exposed to low levels, long-term exposure to this compound has been extensively studied. Leukemia, blood disorders, bone marrow depression, and some types of cancer are directly related to benzene-initiated toxicity. Bioactivation of benzene can lead to the formation of hazardous metabolites such as phenol, hydroquinone, and catechol. Catechol forms semiquinones and reactive quinones that are presumed to play an important role in the generation of reactive oxygen species (ROS). ROS formation can directly induce single and double strand breaks in the DNA, oxidized nucleotides, and hyper-recombination, and consequently produces deleterious genetic changes. In this review, we have addressed the cytotoxic effects of benzene and its main metabolite, catechol, focusing on the oxidative pathway and further DNA damage.

81 citations


Journal ArticleDOI
TL;DR: In vitro gene expression data provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls.
Abstract: A comprehensive literature search was conducted to identify information on gene expression changes following exposures to inorganic arsenic compounds. This information was organized by compound, exposure, dose/concentration, species, tissue, and cell type. A concentration-related hierarchy of responses was observed, beginning with changes in gene/protein expression associated with adaptive responses (e.g., preinflammatory responses, delay of apoptosis). Between 0.1 and 10 microM, additional gene/protein expression changes related to oxidative stress, proteotoxicity, inflammation, and proliferative signaling occur along with those related to DNA repair, cell cycle G2/M checkpoint control, and induction of apoptosis. At higher concentrations (10-100 microM), changes in apoptotic genes dominate. Comparisons of primary cell results with those obtained from immortalized or tumor-derived cell lines were also evaluated to determine the extent to which similar responses are observed across cell lines. Although immortalized cells appear to respond similarly to primary cells, caution must be exercised in using gene expression data from tumor-derived cell lines, where inactivation or overexpression of key genes (e.g., p53, Bcl-2) may lead to altered genomic responses. Data from acute in vivo exposures are of limited value for evaluating the dose-response for gene expression, because of the transient, variable, and uncertain nature of tissue exposure in these studies. The available in vitro gene expression data, together with information on the metabolism and protein binding of arsenic compounds, provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls. The inhibition of DNA repair under conditions of toxicity and proliferative pressure may compromise the ability of cells to maintain the integrity of their DNA.

Journal ArticleDOI
TL;DR: Dose‐dependent synergistic genotoxicity induced by combined exposure of trace p,p′‐DDT and nano‐TiO2 suggests a potential environmental risk of nano‐ TiO2 assisted photocatalysis.
Abstract: The use of titanium dioxide nanoparticles (nano-TiO2) for the degradation of dichlorodiphenyltrichloroethane (p,p′-DDT) increases the risk of exposure to trace nano-TiO2 and p,p′-DDT mixtures. The interaction of p,p′-DDT and nano-TiO2 at low concentrations may alter toxic response relative to nano-TiO2 or p,p′-DDT alone. In this work, the combined genotoxicity of trace nano-TiO2 and p,p′-DDT on human embryo L-02 hepatocytes without photoactivation was studied. Nano-TiO2 (0.1 g/L) was mixed with 0.01–1 mmol/L p,p′-DDT to determine adsorption isotherms. L-02 cells were exposed to different levels of p,p′-DDT (0, 0.001, 0.01, and 0.1 μmol/L) and nano-TiO2 (0, 0.01, 0.1, and 1 μg/mL) respectively. The adsorption of p,p′-DDT by nano-TiO2 was approximately 0.3 mmol/g. Cell viability, apoptosis, and DNA double strand breaks were similar among all test groups. Nano-TiO2 alone (0.01–1 μg/mL) increased the levels of oxidative stress and oxidative DNA adducts (8-OHdG), but it did not induce DNA breaks or chromosome damage. Addition of trace nano-TiO2 with trace p,p′-DDT synergistically enhanced genotoxicity via increasing oxidative stress, oxidative DNA adducts, DNA breaks, and chromosome damage in L-02 cells. Low concentrations of nano-TiO2 and p,p′-DDT increased oxidativestress by reactive oxygen species (ROS) formation and lipid oxidation. Oxidative stress is a major pathway for DNA and chromosome damage. Dose-dependent synergistic genotoxicity induced by combined exposure of trace p,p′-DDT and nano-TiO2 suggests a potential environmental risk of nano-TiO2 assisted photocatalysis. Environ. Mol. Mutagen., 2010. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is demonstrated that garlic constituent diallyl trisulfide suppresses viability of cultured human lung cancer cell lines H358 and H460 by causing G2‐M phase cell cycle arrest and apoptotic cell death.
Abstract: Garlic-derived organosulfur compounds (OSCs) are highly effective in affording protection against chemically induced pulmonary carcinogenesis in animal models. We now demonstrate that garlic constituent diallyl trisulfide (DATS) suppresses viability of cultured human lung cancer cell lines H358 (anon-small cell lung cancer cell line) and H460 (a large cell lung cancer cell line) by causing G2-M phase cell cycle arrest and apoptotic cell death. On the other hand, a normal human bronchial epithelial cell line BEAS-2B was significantly more resistant to growth inhibition and apoptosis induction by DATS compared with lung cancer cells. We also found that even a subtle change in the OSC structure could have a significant impact on its biological activity. For example, DATS was significantly more effective than either diallyl sulfide or diallyl disulfide against proliferation of lung cancer cells. The DATS-mediated G2-M phase cell cycle arrest was explained by down-regulation of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C protein expression leading to accumulation of Tyr15 phosphorylated (inactive) Cdk1. The DATS-induced apoptosis correlated with induction of pro-apoptotic proteins Bax, Bak and BID, and a decrease in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL in lung cancer cells but not in BEAS-2B. Knockdown of Bax and Bak proteins conferred significant protection against DATS-induced apoptotic cytoplasmic histone-associated DNA fragmentation. On the other hand, BID protein was dispensable for DATS-induced apoptosis. In conclusion, the present study indicates that Bax and Bak proteins are critical targets of DATS-induced apoptosis in human lung cancer cells.

Journal ArticleDOI
TL;DR: The centrosome, also known as the microtubule organizing center of the cell, is a membrane‐less organelle composed of a pair of barrel‐shaped centrioles surrounded by electron‐dense pericentriolar material and regulated by phosphorlyation and proteasomal degradation.
Abstract: The centrosome, also known as the microtubule organizing center of the cell, is a membrane-less organelle composed of a pair of barrel-shaped centrioles surrounded by electron-dense pericentriolar material. The centrosome progresses through the centrosome cycle in step with the cell cycle such that centrosomes are duplicated in time to serve as the spindle poles during mitosis and that each resultant daughter cell contains a single centrosome. Regulation of the centrosome cycle with relation to the cell cycle is an essential process to maintain the ratio of one centrosome per new daughter cell. Numerous mitosis-specific kinases have been implicated in this regulation, and phosphorlyation plays an important role in coordinating the centrosome and cell cycles. Centrosome amplification can occur when the cycles are uncoupled, and this amplification is associated with cancer and with an increase in the levels of chromosomal instability. The aurora kinases A, B, and C are serine/threonine kinases that are active during mitosis. Aurora A is associated with centrosomes, being localized at the centrosome just prior to the onset of mitosis and for the duration of mitosis. Overexpression of aurora A leads to centrosome amplification and cellular transformation. The activity of aurora A is regulated by phosphorlyation and proteasomal degradation.

Journal ArticleDOI
TL;DR: The present review highlights the importance of centrosomes for meiotic spindle integrity and the susceptibility of meiotics spindle centrosome to aging and drugs or toxic agents which may be associated with female infertility, aneuploidy, and developmental abnormalities.
Abstract: Centrosomes had been discovered in germ cells and germ cells continue to provide excellent but also challenging material in which to study complex centrosomal dynamics. The present review highlights the importance of centrosomes for meiotic spindle integrity and the susceptibility of meiotic spindle centrosomes to aging and drugs or toxic agents which may be associated with female infertility, aneuploidy, and developmental abnormalities. We discuss cell and molecular aspects of centrosomes during fertilization, a critical stage in which centrosomes play crucial roles in precisely organizing the sperm aster that allows apposition of male and female genomes followed by formation of the zygote aster that is important for the formation of the bipolar spindle apparatus during cell division. Development of an embryo involves sequential cell divisions in which centrosomes play a critical role in establishing asymmetry that allows differentiation of cells and targeted signal transductions for the developing embryo. Asymmetric centrosome dynamics are also critical for stem cell division to maintain one daughter cell as a stem cell while the other daughter cell undergoes centrosome growth in preparation for differentiation. This review also discusses the complex interactions of somatic cell centrosomes with the recipient oocyte in reconstructed (cloned) embryos in which centrosome remodeling is crucial to fulfill functions that are carried out by the zygote centrosome in fertilized eggs. We close our discussion with a look at centrosome dysfunctions and implications for male fertility and assisted reproduction.

Journal ArticleDOI
TL;DR: It is reported that OASs DADS and DATS induce significant apoptosis in human lung adenocarcinoma A549 cells, whereas DAS does not, and the first evidence that Fas‐ mediated cell death pathway is partly involved in DADS but not DATS‐mediated cell death is provided.
Abstract: DAS (diallyl sulfide), DADS (diallyl disulfide), and DATS (diallyl trisulfide) are major oil-soluble allyl sulfides (OAS) that represent major garlic constituents. The anticarcinogenic and antimutagenic effects of these substances have been extensively studied during the last decades. Previous reports suggest that induction of apoptosis by OASs might contribute to their chemopreventive effects. In this study, we report that OASs DADS and DATS induce significant apoptosis in human lung adenocarcinoma A549 cells, whereas DAS does not. Differential modulation of reactive oxygen intermediates (ROI) and mitochondria membrane potential (MMP) may account for the apoptotic effects of DADS and DATS. The underlying molecular mechanisms of apoptosis induction by both compounds include activation of C-Jun N-terminal kinase (JNK), up-regulation of p53, and down-regulation of bcl-2 expression. In our test series, up-regulation of extracellular signal-regulated protein kinase (ERK) was dispensable for apoptosis induction; DAS, DADS, or DATS did not modify expression of MAPK p38, bax, and bcl-xL. Further investigation revealed that the specific JNK inhibitor SP600125 and the antioxidant NAC blocked DADS and DATS-induced apoptosis, whereas ERK inhibitors did not. Additionally, our data provide the first evidence that Fas-mediated cell death pathway is partly involved in DADS but not DATS-mediated cell death. Taken together, our work has elucidated the triggers, important modulators, and signal transduction pathways in DADS and DATS-mediated apoptosis.

Journal ArticleDOI
TL;DR: Exfoliated buccal cells, obtained by a noninvasive procedure, represent robust target cells to assess the occupational exposure to inhalable mixture of chemicals at low doses and the comet assay seems to be suitable to promptly evaluate the genotoxic effects of PAHs mixtures that also contain volatile substances.
Abstract: The objective of this study was to identify a sensitive and noninvasive biomarker of early genotoxic effects, for health risk assessment of workers exposed to mixtures of low doses of xenobiotics. We studied 30 workers exposed to antineoplastic drugs, 57 workers exposed to different mixtures of polycyclic aromatic hydrocarbons (PAHs) (41 airport workers and 16 paving workers) and 76 controls. Comet and micronucleus (MN) tests were performed on lymphocytes and exfoliated buccal cells. The MN assay on lymphocytes did not show significant differences between exposed and controls, while the MN assay on exfoliated buccal cells showed higher values in workers exposed to antineoplastics as compared with controls (0.85 vs. 0.48, P = 0.042). The comet assay on lymphocytes showed a higher comet percentage value (18.11 vs. 11.24 in controls, P = 0.001) and mean tail moment (TM) value (21.84 vs. 16.72 in controls, P = 0.003) in individuals exposed to PAHs as compared with controls; no significant differences were found in exposed to antineoplastics. The comet assay on exfoliated buccal cells did not show significant differences between exposed and control groups for comet percentages, whereas the TM value was higher in workers exposed to PAHs (55.1 vs. 32.31 for controls, P < 0.001). These results show that exfoliated buccal cells, obtained by a noninvasive procedure, represent robust target cells to assess the occupational exposure to inhalable mixture of chemicals at low doses. The comet assay seems to be suitable to promptly evaluate the genotoxic effects of PAHs mixtures that also contain volatile substances. The MN test is suitable to evaluate the effects of antineoplastics. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The results suggest that QT but not TF, could induce mutations in the presence or absence of rat liver S9 or Iron (Fe2+) and NGS in both tester strains by redox cycling and Fenton reactions to produce oxygen free radicals.
Abstract: Quercetin (QT) and Taxifolin (TF) are structurally similar plant polyphenols. Both have been reported to have therapeutic potential as anti-cancer drugs and antioxidants. Mutagenic effects of QT and TF were evaluated using Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA tester strains. Either in the presence or absence of S9 mix, QT was mutagenic to TA102 and WP2 uvrA. However, the mutagenicity of QT was significantly enhanced in the presence of S9 mix. Likewise, in the presence of Iron (Fe2+) and NADPH generating system (NGS) and absence of S9 mix, QT induced significantly high mutations in both TA102 and WP-2 uvrA. Mutagenicity of QT decreased in both strains in the presence of Iron (Fe2+) or NGS alone. TF was not mutagenic in the presence or absence of S9 mix in both TA102 and WP-2 uvrA 2, regardless of the presence of iron or NGS. Incorporation of antioxidants (ascorbate, superoxide dismutase (SOD), catalase (CAT)) and/or iron chelators (desferroxamine (DF) and ethylenediamine-tetraacetate (EDTA)) in the test systems markedly decreased QT-induced mutations in both tester strains. These results suggest that QT but not TF, could induce mutations in the presence or absence of rat liver S9 or Iron (Fe2+) and NGS in both tester strains by redox cycling and Fenton reactions to produce oxygen free radicals. Our results indicate that a minor structural variation between the two plant polyphenols could elicit a marked difference in their genotoxicities. These results provide a basis for further study into the potential use of QT in combination with iron supplements.

Journal ArticleDOI
TL;DR: HPV‐16 E7 oncoprotein is a unique tool to dissect normal and abnormal centriole biogenesis and the underlying molecular circuitry and several lines of evidence suggest that cyclin E/CDK2 complexes and Polo‐like kinase 4 are crucial players in this process.
Abstract: Centrosome aberrations are a frequent finding in human tumors. However, very little is known about the molecular mechanisms leading to disruption of centrosome duplication control and the functional consequences of aberrant centrosome numbers. The high-risk human papillomavirus Type 16 (HPV-16) E6 and E7 oncoproteins are overexpressed in HPV-associated malignancies of the anogenital tract and have been instrumental in delineating different pathways of centrosome amplification. Whereas the E6 oncoprotein was found to provoke centrosome accumulation, the HPV-16 E7 oncoprotein triggers a genuine disruption of the centrosome duplication cycle. Importantly, the E7 oncoprotein can rapidly cause centrosome overduplication through a pathway that involves the concurrent formation of multiple daughters at single maternal centrioles (centriole flowers). Several lines of evidence suggest that cyclin E/CDK2 complexes and Polo-like kinase 4 (PLK4) are crucial players in this process. These findings underscore that the HPV-16 E7 oncoprotein is a unique tool to dissect normal and abnormal centriole biogenesis and the underlying molecular circuitry.

Journal ArticleDOI
TL;DR: It is shown that chronic exposure to pesticides produces DNA damage in pesticides sprayers and suggests that this type of monitoring is recommended in preventive policies for pesticide sprayers.
Abstract: A cross-sectional study was designed to determine whether occupational exposure to a complex mixture of pesticides results in a significant increase of DNA damage in farmers chronically exposed to pesticides in open fields. Leukocytes from 47 agriculture workers exposed to pesticides and 50 controls were evaluated with comet assay. Workers recruitment was based on their exposure to pesticides during the spraying season on cotton crop. Serum from these individuals was also analyzed for pesticides presence using high performance liquid chromatography. Statistically significant difference (P < 0.001) in DNA damage of exposed individuals (mean ± S.D 14.80 ± 3.04 μm) was observed when compared with control group (6.54 ± 1.73 μm) as studied on the basis of comet tail length. Smokers had significantly higher mean comet tail length than nonsmokers and ex-smokers in both workers (20.26 ± 3.53 vs. 14.19 ± 4.25, P < 0.001) and controls (7.86 ± 1.09 vs. 5.80 ± 1.59, P < 0.001), whereas age had a minimal effect on DNA damage (P < 0.05). The length of pesticide exposure is positively associated with DNA damage in exposed individuals (P < 0.001). Our study shows that chronic exposure to pesticides produces DNA damage in pesticide sprayers and suggests that this type of monitoring is recommended in preventive policies for pesticide sprayers. Environ. Mol. Mutagen., 2009. © 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The present study is the first to report the genotoxic and cytotoxic effects of commercial formulation of α‐cypermethrin in peripheral blood lymphocytes.
Abstract: alpha-Cypermethrin, a highly active pyrethroid insecticide, is effective against a wide range of insects encountered in agriculture and animal husbandry The potential genotoxicity of a commercial formulation of alpha-cypermethrin (Fastac 100 EC, containing 10% alpha-cypermethrin as the active ingredient) on human peripheral lymphocytes was examined in vitro by sister chromatid exchange (SCE), chromosomal aberrations (CAs), and micronucleus (MN) tests The human lymphocytes were treated with 5, 10, 15, and 20 microg/ml of alpha-cypermethrin for 24- and 48-hr alpha-Cypermethrin induced SCEs and CAs significantly at all concentrations and treatment times and MN formation was significantly induced at 5 and 10 microg/ml of alpha-cypermethrin when compared with both the control and solvent control Binuclear cells could not be detected sufficiently in the highest two concentration of alpha-cypermethrin (15 and 20 microg/ml) for both the 24- and 48-hr treatment times alpha-Cypermethrin decreased the proliferation index (PI) at three high concentrations (10, 15, and 20 microg/ml) for both treatment periods as compared with the control groups In addition, alpha-cypermethrin reduced both the mitotic index (MI) and nuclear division index (NDI) significantly at all concentrations for two treatment periods The PI and MI were reduced by alpha-cypermethrin in a concentration-dependent manner during both treatment times In general, alpha-cypermethrin showed higher cytotoxic and cytostatic effects than positive control (MMC) at the two highest concentrations for the 24- and 48-hr treatment periods The present study is the first to report the genotoxic and cytotoxic effects of commercial formulation of alpha-cypermethrin in peripheral blood lymphocytes

Journal ArticleDOI
TL;DR: Evaluated flow cytometric methods appeared to distinguish between genotoxic modes of action, as only aneugens increased the average micronucleus fluorescence intensity and the frequency of hypodiploid nuclei.
Abstract: A flow cytometric method for analyzing suspension cell cultures for micronucleus content has been previously reported [Environ. Molec. Mutagen. 47 (2006) 56–66]. The experiments described herein were undertaken to evaluate the compatibility of this method (In Vitro MicroFlow®) with attachment cells. Initially, CHO-K1 cells were studied in nine independent experiments using mitomycin C and cyclophosphamide. The results demonstrated the effectiveness of the cell processing procedure, and also provided historical control data that were useful for setting criteria for making positive calls. Subsequently, CHO-K1 cells were treated with methyl methanesulfonate, mitomycin C, etoposide, vinblastine sulfate, dexamethasone, and sodium chloride. Whereas the four genotoxicants were each observed to increase micronucleus frequencies, the non-genotoxicants induced no such response up to cytotoxic concentrations. Following this initial work, inter-laboratory transferability was evaluated across three sites using a common cell staining and analysis protocol for CHO-K1 or V79 cells that had been treated with the ten chemicals listed in Annex 3 of the OECD Draft Proposal for a New Guideline 487: In Vitro Mammalian Cell Micronucleus Test. With the exception of benzo[a]pyrene at one site, each laboratory observed increased micronucleus frequencies for the genotoxicants, whereas no significant induction occurred with the non-genotoxicants. Interestingly, the method appeared to distinguish between genotoxic modes of action, as only aneugens increased the average micronucleus fluorescence intensity and the frequency of hypodiploid nuclei. Collectively, these data suggest that flow cytometry is capable of providing reliable micronucleus counts, and that additional information is obtained that appears to discern genotoxic modes of action.

Journal ArticleDOI
TL;DR: Particulate hexavalent chromium induced cytotoxicity and genotoxicity in a concentration‐dependent manner in both right whale lung and skin fibroblasts and further support the hypothesis that chromium may be a health concern for the endangered North Atlantic right whale.
Abstract: Hexavalent chromium compounds are present in the atmosphere and oceans and are established mutagens and carcinogens in human and terrestrial mammals. However, the adverse effects of these toxicants in marine mammals are uncertain. Previously, we reported that North Atlantic right whales, one of the most endangered great whales, have tissue chromium levels that are high, levels that may pose a risk to the whale's health. Furthermore, the study suggested that inhalation may be an important exposure route. Exposure to chromium through inhalation is mainly because of particulate compounds. However, the toxicity of particulate chromium compounds in marine mammal cells is unknown. Accordingly, in this study, we tested the cytotoxic and genotoxic effects of particulate hexavalent chromium in primary cultured lung and skin fibroblasts from the endangered North Atlantic right whale. Cytotoxicity was measured by clonogenic survival assay, and genotoxicity was measured as production of chromosome aberrations. Particulate hexavalent chromium induced cytotoxicity and genotoxicity in a concentration-dependent manner in both right whale lung and skin fibroblasts. Lung fibroblasts were more resistant to chromium cytotoxicity, but presented with more chromosome damage than skin fibroblasts. These data further support the hypothesis that chromium may be a health concern for the endangered North Atlantic right whale.

Journal ArticleDOI
TL;DR: Since for any of the assays applied, no clear dose‐dependent effect was observed, it indicates that glyphosate in concentrations relevant to human exposure do not pose significant health risk.
Abstract: In the present study we evaluated the genotoxic and oxidative potential of glyphosate on human lymphocytes at concentrations likely to be encountered in residential and occupational exposure. Testing was done with and without metabolic activation (S9). Ferric-reducing ability of plasma (FRAP), thiobarbituric acid reactive substances (TBARS) and the hOGG1 modified comet assay were used to measure glyphosate's oxidative potential and its impact on DNA. Genotoxicity was evaluated by alkaline comet and analysis of micronuclei and other nuclear instabilities applying centromere probes. The alkaline comet assay showed significantly increased tail length (20.39 microm) and intensity (2.19%) for 580 microg/ml, and increased tail intensity (1.88%) at 92.8 microg/ml, compared to control values of 18.15 mum for tail length and 1.14% for tail intensity. With S9, tail length was significantly increased for all concentrations tested: 3.5, 92.8, and 580 microg/ml. Using the hOGG1 comet assay, a significant increase in tail intensity was observed at 2.91 microg/ml with S9 and 580 microg/ml without S9. Without S9, the frequency of micronuclei, nuclear buds and nucleoplasmic bridges slightly increased at concentrations 3.5 microg/ml and higher. The presence of S9 significantly elevated the frequency of nuclear instabilities only for 580 microg/ml. FRAP values slightly increased only at 580 microg/ml regardless of metabolic activation, while TBARS values increased significantly. Since for any of the assays applied, no clear dose-dependent effect was observed, it indicates that glyphosate in concentrations relevant to human exposure do not pose significant health risk.

Journal ArticleDOI
TL;DR: Data suggest that during S and G2 phases of the cell cycle, the normal function of BRCA1 directs the ubiquitination of γ‐tubulin, resulting in inhibition of centrosome microtubule nucleation function and blocking of Centrosome reduplication.
Abstract: Mutation of the breast and ovarian cancer specific tumor suppressor, BRCA1, results in supernumerary and hyperactive centrosomes, which in turn likely contribute to the aneuploidy evident in breast cancer cells. The BRCA1-dependent ubiquitin ligase activity is required for the regulation of centrosome function, and among its substrates is gamma-tubulin. Data suggest that during S and G2 phases of the cell cycle, the normal function of BRCA1 directs the ubiquitination of gamma-tubulin, resulting in inhibition of centrosome microtubule nucleation function and blocking of centrosome reduplication. Loss of BRCA1 activity, as occurs in breast cancer cells, would result in centrosomes that are unrestrained, leading to the hyperactive and over-duplicated centrosomes often observed in breast cancer cells. The current knowledge of BRCA1 regulation of centrosomes will be discussed in this focused review, and it will be suggested that this function is important for the tumor suppression phenotype of BRCA1.

Journal ArticleDOI
TL;DR: It is suggested that, CYP2D6 polymorphisms may play a role in the susceptibility to pediatric ALL, whereas the EPHX1, NQO1, and MPO polymorphisms might have a protective function against leukemogenesis.
Abstract: Polymorphic variations of several genes associated with dietary effects and exposure to environmental carcinogens may influence susceptibility to leukemia development. The objective of the present study was to evaluate the effect of the polymorphisms of debrisoquine hydroxylase (CYP2D6), epoxide hydrolase (EPHX1), myeloperoxidase (MPO), and quinone-oxoreductase (NQO1), which have been implicated in xenobiotic metabolism, on the risk of childhood acute lymphoblastic leukemia (ALL). We evaluated the frequency of polymorphisms in the CYP2D6 (*3 and *4), EPHX1 (*2 and *3), MPO (*2), and NQO1 (*2) genes in 206 patients with childhood ALL and in 364 healthy individuals matched for age and gender from a Brazilian population separated by ethnicity (European ancestry and African ancestry), using the PCR-RFLP method. The CYP2D6 polymorphism variants were associated with an increased risk of ALL. The EPHX1, NQO1, and MPO variant genotypes were significantly associated with a reduced risk of childhood ALL. A significantly stronger protective effect is observed when the EPHX1, NQO1, and MPO variant genotypes are combined suggesting that, CYP2D6 polymorphisms may play a role in the susceptibility to pediatric ALL, whereas the EPHX1, NQO1, and MPO polymorphisms might have a protective function against leukemogenesis.

Journal ArticleDOI
TL;DR: Based on the results of Q‐PCR, the oncogene PTTG1, which was upregulated by all carcinogenic chemical exposures in the array experiments, might be a useful biomarker for evaluation of the carcinogenesis of inorganic carcinogens.
Abstract: Carcinogenesis is an important chronic toxicity of metals and metalloids, although their mechanisms of action are still unclear. Comparison of gene expression patterns induced by carcinogenic metals, metalloids, and model carcinogens would give an insight into understanding of their carcinogenic mechanisms. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2, after exposing to two metals (cadmium and nickel), a metalloid (arsenic), and three model carcinogenic chemicals N-dimethylnitrosoamine (DMN), 12-O-tetradecanoylphorbol-13-acetate (TPA), and tetrachloroethylene (TCE) using DNA microarrays with 8,795 human genes. Of the genes altered by As, Cd, and Ni exposures, 31–55% were overlapped with those altered by three model carcinogenic chemical exposures in our experiments. In particular, the metals and metalloid shared certain characteristics with TPA and TCE in remarkable upregulations of the genes associated with progression of cell cycle, which might play a central role in As, Cd, and Ni carcinogenesis. This characteristic of gene expression alteration was partially counteracted by intracellular accumulation of vitamin C in As-exposed cells, whereas the number of cell-cycle associated genes was increased in Cd- and Ni-exposed cells. In our experimental conditions, ROS might have an accelerative effect on the cell proliferation mechanisms of As, but have an inhibitory effect on those of other two heavy metals. Furthermore, based on the results of Q-PCR, the oncogene PTTG1, which was upregulated by all carcinogenic chemical exposures in the array experiments, might be a useful biomarker for evaluation of the carcinogenesis of inorganic carcinogens. Environ. Mol. Mutagen., 2009. © 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is shown that centrosome amplification occurs after ionising radiation (IR) in chicken DT40 cells that lack DNA‐PK, Ku70, H2AX, Xpa, and Scc1, demonstrating that these activities are not required for centrosomes amplification.
Abstract: Altered centrosome numbers are seen in tumor cells in response to DNA damaging treatments and are hypothesised to contribute to cancer development. The mechanism by which the centrosome and chromosome cycles become disconnected after DNA damage is not yet clear. Here, we show that centrosome amplification occurs after ionising radiation (IR) in chicken DT40 cells that lack DNA-PK, Ku70, H2AX, Xpa, and Scc1, demonstrating that these activities are not required for centrosome amplification. We show that inhibition of topoisomerase II induces Chk1-dependent centrosome amplification, a similar response to that seen after IR. In the immortalised, nontransformed hTERT-RPE1 line, we observed centriole splitting, followed by dose-dependent centrosome amplification, after IR. We found that IR results in the formation of single, not multiple, daughter centrioles during centrosome amplification in U2OS osteosarcoma cells. Analysis of BRCA1 and BRCA2 mutant tumor cells showed high levels of centriole splitting in the absence of any treatment. IR caused pronounced levels of centrosome amplification in BRCA1 mutant breast cancer cells. These data show that centrosome amplification occurs after different forms of DNA damage in chicken cells, in nontransformed human cells and in human tumor cell lines, indicating that this is a general response to DNA damaging treatments. Together, our data suggest that centriole splitting is a key step in potentiation of the centrosome amplification that is a general response to DNA damage.

Journal ArticleDOI
TL;DR: In this article, the authors compared the effects of polycyclic aromatic hydrocarbons (PAHs) extracts from contaminated soils collected at six industrial settings in Sweden and found that most soil extracts induced phosphorylation of Mdm2 at the 2A10 epitope at low concentrations.
Abstract: Contaminated soil is a serious environmental problem, constituting a risk to humans and the environment. Polycyclic aromatic hydrocarbons (PAHs) are often present at contaminated sites. However, risk levels are difficult to estimate because of the complexity of contaminants present. Here, we compare cellular effects of extracts from contaminated soils collected at six industrial settings in Sweden. Chemical analysis showed that all soils contained complex mixtures of PAHs and oxy-PAHs. Western blotting and immunocytochemistry were used to investigate DNA damage signaling in HepG2 cells exposed to extracts from these soils. The effects on phosphorylated Mdm2, p53, Erk, H2AX, 53BP1, and Chk2, cell cycle regulating proteins (cyclin D1 and p21), and cell proliferation were compared. We found that most soil extracts induced phosphorylation of Mdm2 at the 2A10 epitope at low concentrations. This is in line with previous studies suggesting that this endpoint reflects readily repaired DNA-damage. However, we found concentration- and time-dependent γH2AX and 53BP1 responses that were sustained for 48 hr. These endpoints may reflect the presence of different types of persistent DNA-damage. High concentrations of soil extracts decreased cyclin D1 and increased p21 response, indicating cell cycle arrest. Phosphorylation of Mdm2 at Ser166, which attenuates the p53 response and is induced by many tumor promoters, was induced in a time-dependent manner and was associated with Erk phosphorylation. Taken together, the PAH extracts elicited unpredictable signaling responses that differed between samples. More polar compounds, i.e., oxy-PAHs, also contributed to the complexity. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: The results showed that genotoxic pollutants in the tested soil were still bioavailable despite the age of the contaminated soil, and polycyclic aromatic hydrocarbons appeared to be the most likely source of the genotoxicity recorded, although effects of metals could not be excluded.
Abstract: Polluted soil sampled from a former coking plant in Lorraine (France) was studied for its genotoxicity and reproductive effects on the Eisenia fetida earthworm. Genotoxicity was investigated by means of the single-cell gel electrophoresis (comet) assay on the coelomocytes of earthworms after 4 and 10 days of exposure to the soil. DNA damage and a decline in the number of coelomocytes extruded from earthworms were observed at coking plant soil concentrations of 20 and 40% (w/w) in ISO soil. These soil concentrations had previously been shown to significantly reduce cocoon and juvenile productions after 28 and 56 days of earthworm exposure, respectively. The results showed that genotoxic pollutants in the tested soil were still bioavailable despite the age of the contaminated soil. Similar values of the no-observed-effect concentration (NOEC) corresponding to 10% of the contaminated soil and of the lowest soil concentration tested inducing effects (LOEC) corresponding to 20% of the contaminated soil were obtained from reproductive and genotoxicity endpoints. Among the soil pollutants measured, polycyclic aromatic hydrocarbons (PAHs) appeared to be the most likely source of the genotoxicity recorded, although effects of metals could not be excluded. Measurement of genotoxicity in earthworms could complement the existing standardized tests used in the ecotoxicological assessment of the risk associated with contaminated soils. Environ. Mol. Mutagen., 2009. © 2008 Wiley-Liss, Inc.