scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Earth Sciences in 2011"


Journal ArticleDOI
TL;DR: In this paper, morphometric analyses have been used to estimate the flash flood risk levels of sub-watersheds within the Wadi Feiran basin, and a detailed geomorphological map for the most hazardous sub-basins is presented.
Abstract: Flash floods are considered to be one of the worst weather-related natural disasters. They are dangerous because they are sudden and are highly unpredictable following brief spells of heavy rain. Several qualitative methods exist in the literature for the estimations of the risk level of flash flood hazard within a watershed. This paper presents the utilization of remote sensing data such as enhanced Thematic Mapper Plus (ETM+), Shuttle Radar Topography Mission (SRTM), coupled with geological, geomorphological, and field data in a GIS environment for the estimation of the flash flood risk along the Feiran–Katherine road, southern Sinai, Egypt. This road is a vital corridor for the tourists visiting here for religious purposes (St. Katherine monastery) and is subjected to frequent flash floods, causing heavy damage to man-made features. In this paper, morphometric analyses have been used to estimate the flash flood risk levels of sub-watersheds within the Wadi Feiran basin. First, drainage characteristics are captured by a set of parameters relevant to the flash flood risk. Further, comparison between the effectiveness of the sub-basins has been performed in order to understand the active ones. A detailed geomorphological map for the most hazardous sub-basins is presented. In addition, a map identifying sensitive sections is constructed for the Feiran–Katherine road. Finally, the most influenced factors for both flash flood hazard and critical sensitive zones have been discussed. The results of this study can initiate appropriate measures to mitigate the probable hazards in the area.

331 citations


Journal ArticleDOI
TL;DR: This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS and shows that the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.
Abstract: Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.

218 citations


Journal ArticleDOI
TL;DR: In this article, a landslide inventory map was prepared, and a susceptibility estimate was assessed based on the following parameters which influence the landslide occurrence: slope angle, slope aspect, curvature, lithology and land use.
Abstract: The Sibiciu Basin is located in Romania between the Buzau Mountains and the Buzau Subcarpathians (Curvature Carpathians and Subcarpathians). The geology of the basin consists of Paleogene flysch deposits represented by an alternation of sandstones, marls, clays and schists and Neogene deposits represented by marls, clays and sands. The area is affected by different types of landslides (shallow, medium-deep and deep-seated failures). In Romania, in the last decades, direct and indirect methods have been applied for landslide susceptibility assessment. The most utilized before 2000 were based on qualitative approaches. This study evaluates the landslide susceptibility in the Sibiciu Basin using a bivariate statistical analysis and an index of entropy. A landslide inventory map was prepared, and a susceptibility estimate was assessed based on the following parameters which influence the landslide occurrence: slope angle, slope aspect, curvature, lithology and land use. The landslide susceptibility map was divided into five classes showing very low to very high landslide susceptibility areas.

215 citations


Journal ArticleDOI
TL;DR: In this paper, a morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds, which are part of Western Ghats.
Abstract: A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.

212 citations


Journal ArticleDOI
TL;DR: In this article, the authors compare the implementation of two semi-quantitative landslide assessment approaches, using landslide susceptibility maps compiled in a GIS environment, and reveal that even though both methods correctly show the landslide status of the second site, the RES map reveals a better behavior in the spatial distribution of the various landslide susceptibility zones.
Abstract: As landslides are very common in Greece, causing serious problems to the social and economic welfare of many communities, the implementation of a proper hazard analysis system will help the creation of a reliable susceptibility map. Τhis will help local communities to define a safe land use and urban development. The purpose of this study is to compare the implementation of two semi-quantitative landslide assessment approaches, using landslide susceptibility maps compiled in a GIS environment. The compared methods are rock engineering system (RES) and the analytic hierarchy process (AHP). For the landslide susceptibility analysis, the Northeastern part of the Achaia County was examined. This area suffers from many landslides, because of its neighborhood with the tectonically active Corinthian Gulf and its geological setting (Neogene sediments, flysch and other bedrock formations, with local overthrusts). Ten parameters were used in both methodologies, and each one was separated into five categories ranging from 0 to 4, representing their specific conditions derived from the investigation of the landslides in the western part of the study area (ranking area). A layer map was generated for each parameter, using GIS, while the weighting coefficients of each methodology were used for the compilation of RES and AHP final maps of the eastern part of the study area (validating area). By examining these two maps, it is revealed that even though both correctly show the landslide status of the second site, the RES map reveals a better behavior in the spatial distribution of the various landslide susceptibility zones.

189 citations


Journal ArticleDOI
TL;DR: In this paper, the authors performed long-term tests on four selected rocks over 1,400 freeze-thaw action cycles and compared the behavior of the rocks in the weathering tests according to the current explanatory models of stress formation by growing ice crystals in the pore space.
Abstract: Damages to natural building stones induced by the action of frost are considered to be of great importance. Commonly, the frost resistance of building stones is checked by standardised freeze–thaw tests before using. Corresponding tests normally involve 30–50 freeze–thaw action cycles. In order to verify the significance of such measurements, we performed long-term tests on four selected rocks over 1,400 freeze–thaw action cycles. Additionally, numerous petrophysical parameters were analysed to compare the behaviour of rocks in the weathering tests according to the current explanatory models of stress formation by growing ice crystals in the pore space. The long-term tests yield more information about the real frost sensibility of the rocks. A clear deterioration cannot be determined in most cases until 50 weathering cycles have been completed. In the freeze–thaw tests, the samples are also stressed by changing temperature and moisture, indicating that different decay mechanisms can interfere with each other. Thus, thermohygric and moisture expansion are important damage processes.

176 citations


Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper determined how physico-chemical properties, microbial biomass, and enzyme activities changed for abandoned farmland with an age sequence of 0, 1, 5, 7, 10, 15, 20, 25, 30, 40 and 50 years in Zhifanggou watershed (8.27 km2), Shaanxi Province, NW China.
Abstract: The re-establishment of natural species-rich heath lands on abandoned farmland is one of the main measures in soil erosion control in the Loess Plateau of China. So, it is important to understand how the vegetation and soil properties develop after land abandonment. The objective of this study was to determine how physico-chemical properties, microbial biomass, and enzyme activities changed for abandoned farmland with an age sequence of 0, 1, 5, 7, 10, 15, 20, 25, 30, 40 and 50 years in Zhifanggou watershed (8.27 km2), Shaanxi Province, NW China. The results of this study indicate that species succession after land abandonment in the Zhifanggou watershed on the Loess Plateau resulted in a significant improvement in soil chemical and microbiological properties. Soil organic C, total N, available N and K, soil microbial biomass C, N and P, as well as alkaline phosphatase, catalase, saccharase, and cellulase activity increased with time since plantation establishment increased. In contrast, soil bulk density, pH, and polyphenol oxidase activity decreased after farmland abandonment. Urease and α-amylase decreased until 15 years at the early phase of species succession, and then increased. However, there was no significant change in total P and available P during the restoration. Results only implied the tendency that the herbage was developing toward shrub. Although secondary succession plays an important role which improved soil properties after farmland abandonment, the values of these parameters were still much lower than native forest in 50 years. Thus, vegetation recovery after farmland abandonment in a semi-arid environment would be slow and the improvement of soil properties in the Loess Plateau is likely to require a considerably long period of time.

160 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper applied the Revised Universal Soil Loss Equation (RUSLE), remote-sensing technique, and geographic information system (GIS) to map the soil erosion risk in Miyun Watershed, North China.
Abstract: This paper applied the Revised Universal Soil Loss Equation (RUSLE), remote-sensing technique, and geographic information system (GIS) to map the soil erosion risk in Miyun Watershed, North China. The soil erosion parameters were evaluated in different ways: the R factor map was developed from the rainfall data, the K factor map was obtained from the soil map, the C factor map was generated based on a back propagation (BP) neural network method of Landsat ETM+ data with a correlation coefficient (r) of 0.929 to the field collected data, and a digital elevation model (DEM) with a spatial resolution of 30 m was derived from topographical map at the scale of 1:50,000 to develop the LS factor map. P factor map was assumed as 1 for the watershed because only a very small area has conservation practices. By integrating the six factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the upper watershed of Miyun reservoir was obtained by the RUSLE model. The results showed that the annual average soil loss for the upper watershed of Miyun reservoir was 9.86 t ha−1 ya−1 in 2005, and the area of 47.5 km2 (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.88% very low, 21.90% low, 6.19% moderate, 2.90% severe, and 1.84% very severe. Among all counties and cities in the study area, Huairou County is in the extremely severe level of soil erosion risk, about 39.6% of land suffer from soil erosion, while Guyuan County in the very low level of soil erosion risk suffered from 17.79% of soil erosion in 2005. Therefore, the areas which are in the extremely severe level of soil erosion risk need immediate attention from soil conservation point of view.

153 citations


Journal ArticleDOI
TL;DR: In this paper, the extent of metal accumulation by plants found in a mining area in Hamedan Province in the central west part of Iran was assessed by measuring the total concentrations of trace elements (Pb, Zn, Mn and Fe) using atomic absorption spectrophotometer.
Abstract: This study aims to assess the extent of metal accumulation by plants found in a mining area in Hamedan Province in the central west part of Iran. It also investigates to find suitable plants for phytoextraction and phytostabilization as two phytoremediation strategies. Plants with a high bioconcentration factor (BCF) and low translocation factor (TF) have the potential for phytostabilization while plants with both BCFs and TFs greater than one have the potential to be used for phytoextraction. In this study, shoots and roots of the 12 plant species and the associated soil samples were collected. The collected samples were then analyzed by measurement of total concentrations of trace elements (Pb, Zn, Mn and Fe) using atomic absorption spectrophotometer. Simultaneously, BCF and TF parameters were calculated for each element. Results showed that although samples suitable for phytoextraction of Pb, Zn, Mn and Fe and phytostabilization of Fe were not detected, Scrophularia scoparia was the most suitable for phytostabilization of Pb, Centaurea virgata,Echinophora platyloba and Scariola orientalis had the potential for phytostabilization of Zn and Centaurea virgata and Cirsium congestum were the most efficient in phytostabilization of Mn. Present study showed that native plant species growing on contaminated sites may have the potential for phytoremediation.

152 citations


Journal ArticleDOI
TL;DR: In this article, extensive mineralogical, petrophysical and fabric investigations were performed on eight German sandstones in order to obtain more information regarding the weathering process and its dependence on the rock fabric.
Abstract: The expansion processes that develop in building stones upon changes of moisture content may be an important contributing factor for their deteriorations. Until recently, few data could be found in the literature concerning this parameter and weathering processes. Moreover, the processes that may be responsible for the moisture related expansion of natural building stones are not yet completely understood. To further elucidate this process, extensive mineralogical, petrophysical and fabric investigations were performed on eight German sandstones in order to obtain more information regarding the weathering process and its dependence on the rock fabric. The analysed sandstones show a wide range of pore size distributions and porosities. A positive correlation with the fabric and the pore space can be found for all studied petrophysical parameters. The intensity of the expansion and related swelling pressure cannot be attributed only to the swelling of clay minerals. The investigations suggest that the micropores and the resulting disjoining pressure during wet/dry cycles also play an important role. The results obtained suggest that the mechanism is related to the presence of liquid water within the porous material.

151 citations


Journal ArticleDOI
No-Wook Park1
TL;DR: A data integration framework based on the Dempster-Shafer theory of evidence for landslide susceptibility mapping with multiple geospatial data that efficiently represented and integrated multiple data sets and showed better prediction capability than that of a traditional logistic regression model is presented.
Abstract: GIS-based spatial data integration tasks for predictive geological applications, such as landslide susceptibility analysis, have been regarded as one of the primary geological application issues of GIS. An efficient framework for proper representation and integration is required for this kind of application. This paper presents a data integration framework based on the Dempster-Shafer theory of evidence for landslide susceptibility mapping with multiple geospatial data. A data-driven information representation approach based on spatial association between known landslide occurrences and input geospatial data layers is used to assign mass functions. After defining mass functions for multiple geospatial data layers, Dempster’s rule of combination is applied to obtain a series of combined mass functions. Landslide susceptibility mapping using multiple geospatial data sets from Jangheung in Korea was conducted to illustrate the application of this methodology. The results of the case study indicated that the proposed methodology efficiently represented and integrated multiple data sets and showed better prediction capability than that of a traditional logistic regression model.

Journal ArticleDOI
TL;DR: In this paper, the presence of arsenic on the surface of magnetite-maghemite nanoparticles was investigated and the results showed that the removal of arsenic from contaminated water also depends on contact time and initial concentration of arsenic.
Abstract: In this study, magnetite–maghemite nanoparticles were used to treat arsenic-contaminated water. X-ray photoelectron spectroscopy (XPS) studies showed the presence of arsenic on the surface of magnetite–maghemite nanoparticles. Theoretical multiplet analysis of the magnetite–maghemite mixture (Fe3O4-γFe2O3) reported 30.8% of maghemite and 69.2% of magnetite. The results show that redox reaction occurred on magnetite–maghemite mixture surface when arsenic was introduced. The study showed that, apart from pH, the removal of arsenic from contaminated water also depends on contact time and initial concentration of arsenic. Equilibrium was achieved in 3 h in the case of 2 mg/L of As(V) and As(III) concentrations at pH 6.5. The results further suggest that arsenic adsorption involved the formation of weak arsenic-iron oxide complexes at the magnetite–maghemite surface. In groundwater, arsenic adsorption capacity of magnetite–maghemite nanoparticles at room temperature, calculated from the Langmuir isotherm, was 80 μmol/g and Gibbs free energy (∆G0, kJ/mol) for arsenic removal was −35 kJ/mol, indicating the spontaneous nature of adsorption on magnetite–maghemite nanoparticles.

Journal ArticleDOI
TL;DR: In this article, the RUSLE factors (R, K, LS, C and P) were computed from local rainfall, topographic, soil classification and remote sensing data.
Abstract: Siruvani watershed with a surface area of 205.54 km2 (20,554 hectare), forming a part of the Western Ghats in Attapady valley, Kerala, was chosen for testing RUSLE methodology in conjunction with remote sensing and GIS for soil loss prediction and identifying areas with high erosion potential. The RUSLE factors (R, K, LS, C and P) were computed from local rainfall, topographic, soil classification and remote sensing data. This study proved that the integration of soil erosion models with GIS and remote sensing is a simple and effective tool for mapping and quantifying areas and rates of soil erosion for the development of better soil conservation plans. The resultant map of annual soil erosion shows a maximum soil loss of 14.917 t h−1 year−1 and the computations suggest that about only 5.76% (1,184 hectares) of the area comes under the severe soil erosion zone followed by the high-erosion zone (11.50% of the total area). The dominant high soil erosion areas are located in the central and southern portion of the watershed and it is attributed to the shifting cultivation, and forest degradation along with the combined effect of K, LS and C factor. The RUSLE model in combination with GIS and remote sensing techniques also enables the assessment of pixel based soil erosion rate.

Journal ArticleDOI
Shibiao Bai1, Guonian Lu1, Jian Wang1, Pinggen Zhou, Liang Ding1 
TL;DR: Wang et al. as mentioned in this paper presented an approach for the analysis and modeling of landslide data using rare events logistic regression and applied the approach to an area in Lianyungang, China.
Abstract: Landslides have had a huge effect on human life, the environment and local economic development, and therefore they need to be well understood. In this study, we presented an approach for the analysis and modeling of landslide data using rare events logistic regression and applied the approach to an area in Lianyungang, China. Digital orthophotomaps, digital elevation models of the region, geological maps and different GIS layers including settlement, road net and rivers were collected and applied in the analysis. Landslides were identified by monoscopic manual interpretation and validated during the field investigation. To validate the quality of mapping, the data from the study area were divided into a training set and validation set. The result map showed that 4.26% of the study area was identified as having very high susceptibility to landslides, whereas the others were classified as having very low susceptibility (47.2%), low susceptibility (22.21%), medium susceptibility (14.39%) and high susceptibility (11.93%). The quality of the landslide-susceptibility map produced in this paper was validated, and it can be used for planning protective and mitigation measures. The landslide-susceptibility map is a fundamental part of the Lianyungang city landslide risk assessment.

Journal ArticleDOI
TL;DR: In this paper, a set of four satellite images from the multi-spectral scanner (MSS), thematic mapper (TM) and Systeme Pour l'Observation de la Terre (SPOT) sensors were utilized in order to estimate the spatio-temporal changes that occurred in the coastal zone between Damietta Nile branch and Port-Said between 1973 and 2007.
Abstract: The coastal zone of the Nile Delta is a promising area for energy resources and industrial activities. It also contains important wetland ecosystems. This coastal area witnessed several changes during the last century. A set of four satellite images from the multi-spectral scanner (MSS), thematic mapper (TM) and Systeme Pour l’Observation de la Terre (SPOT) sensors were utilized in order to estimate the spatio-temporal changes that occurred in the coastal zone between Damietta Nile branch and Port-Said between 1973 and 2007. Image processing applied in this study included geometric rectification; atmospheric correction; on-screen shoreline digitizing of the 1973 (MSS) and 2007 (SPOT) images for tracking the shoreline position between Damietta promontory and Port-Said; and water index approach for quantifying Manzala lagoon surface area change using 1973 (MSS), 1984 (TM) and 2003 (TM) images. Results showed that coastal erosion was severe near Damietta promontory and decreased eastward, however, accretion was observed near Port-Said. About 50% of the coastal strip was under erosion and 13% was under accretion. In addition, a remarkable decline (34.5%) of the Manzala lagoon surface area was estimated. These changes were attributed mainly to the control of the River Nile flooding and the land use change by anthropogenic activities.

Journal ArticleDOI
TL;DR: In this paper, a damage-based hydromechanical model based on elastic damage theory is proposed to simulate the mining-induced groundwater inrushes when the effect of faults and karst collapse columns is considered in the numerical simulation.
Abstract: A large number of statistics indicate that water inrush has a direct relationship with geological structures such as fault and karst collapse columns. Understanding the mechanism of water inrushes controlled by geologic structures is of vital importance for adopting effective measures to prevent their occurrence. The work begins with formulization of a damage-based hydromechanical model based on elastic damage theory. Next, the model is numerically implemented with finite element method by employing a finite element package called COMSOL Multiphysics, and is also validated against some existing experimental observations. Finally, the model is used to simulate the mining-induced groundwater inrushes when the effect of faults and karst collapse columns is considered in the numerical simulation, and some suggestive conclusions for preventing water inrushes and optimizing underground mining operations are drawn.

Journal ArticleDOI
TL;DR: In this paper, the temporal and spatial changes in value of the normalized-difference vegetation index (NDVI) in this region, and the relationships between NDVI and climatic factors (temperature and precipitation) based on NOAA Advanced Very High Resolution Radiometer Global Inventory Modeling and Mapping Studies NDVI data with 8-km resolution from 1982 to 2006.
Abstract: The Three-North Shelter Forest Programme (TNSFP) covers 551 Chinese counties and an area of 4,069,000 km2 mostly in arid and semi-arid regions. In this paper, we discuss the temporal and spatial changes in value of the normalized-difference vegetation index (NDVI) in this region, and the relationships between NDVI and climatic factors (temperature and precipitation) based on NOAA Advanced Very High Resolution Radiometer Global Inventory Modeling and Mapping Studies NDVI data with 8-km resolution from 1982 to 2006. During the past 25 years, the vegetation cover has generally increased in eastern regions of China and the oasis in the north piedmont of Tianshan Mountains, but has decreased northwest of Xinjiang and in the Hulunbeier Plateau. The multi-year monthly average NDVI distribution map showed that NDVI increased from April to August, but in the western and northern plateau areas, the lower temperatures and high altitude created a shorter growing season (1 or 2 months). The vegetation of the study area has generally increased in the regions covered by the TNSFP. Linear regression analysis of the vegetation cover showed an increasing trend over large areas. The largest annual growth rate per pixel (the slope of the regression) was 0.009; the largest negative annual change was −0.004. The correlation between NDVI and precipitation was higher than that between NDVI and temperature, suggesting that precipitation is the most important factor that affects NDVI changes in the study area, especially for temperate desert vegetation in northwestern China.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the application of different recently developed artificial neural network models to slope stability analysis based on the actual slope failure database available in the literature, and different ANN models are developed to classify the slope as stable or unstable (failed) and to predict the factor of safety.
Abstract: Slope stability analysis is one of the most important problems in geotechnical engineering. The development in slope stability analysis has followed the development in computational geotechnical engineering. This paper discusses the application of different recently developed artificial neural network models to slope stability analysis based on the actual slope failure database available in the literature. Different ANN models are developed to classify the slope as stable or unstable (failed) and to predict the factor of safety. The developed ANN model is found to be efficient compared with other methods like support vector machine and genetic programming available in literature. Prediction models are presented based on the developed ANN model parameters. Different sensitivity analyses are made to identify the important input parameters.

Journal ArticleDOI
Peng Lu1, Chen Zhu1
TL;DR: In this paper, a thermodynamic dataset for arsenic species in the As-O-H-S-Fe-Ba system was compiled from the literature, and Eh-pH diagrams were constructed at 25°C and 1 bar.
Abstract: A thermodynamic dataset for arsenic species in As–O–H–S–Fe–Ba system was compiled from the literature. Using this dataset, Eh–pH diagrams for the systems As–O–H, As–O–H–S, As–O–H–S–Fe, As–O–H–Ba, and As–O–H–S–Fe–Ba were constructed at 25°C and 1 bar. The inclusion of thioarsenite species in the systems As–O–H–S and As–O–H–S–Fe results in substantial differences from previously published Eh–pH diagrams. There are considerable differences in the thermodynamic properties for orpiment, realgar, scorodite, arsenopyrite, barium arsenate, and barium hydrogen arsenate, which result in vastly different stability fields when different values are adopted.

Journal ArticleDOI
TL;DR: In this paper, a multisite surface complexation model without assuming exchange is based on the binding of the most dominant uranium species to aluminol and silanol edge sites of montmorillonite.
Abstract: Batch experiments were conducted to study the sorption of uranium on selected clay minerals (KGa-1b and KGa-2 reference kaolinite, SWy-2 and STx-1b reference montmorillonite, and IBECO natural bentonite) as a function of pH (4–9) and 0.001, 0.01, and 0.025 M NaCl in equilibrium with the CO2 partial pressure of the atmosphere. Uranium concentrations were kept below 100 μg L−1 to avoid precipitation of amorphous Uranium-hydroxides. Solely PTFE containers and materials were used, because experiments showed significant sorption at higher pH on glass ware. All batch experiments were performed over a period of 24 h, since kinetic experiments proved that the common 10 or 15 min are in many cases by far not sufficient to reach equilibrium. Kaolinite showed much greater uranium sorption than the other clay minerals due to the more aluminol sites available. Sorption on the poorly crystallized KGa-2 was higher than on the well-crystallized KGa-1b. Uranium sorption on STx-1b and IBECO exhibited parabolic behavior with a sorption maximum around pH 6.5. Sorption of uranium on montmorillonites showed a distinct dependency on sodium concentrations because of the effective competition between uranyl and sodium ions, whereas less significant differences in sorption were found for kaolinite. The presence of anatase as impurity in kaolinite enhanced the binding of uranyl-carbonate complexes with surface sites. The kinetic of uranium sorption behavior was primarily dependent on the clay minerals and pH. A multisite surface complexation model without assuming exchange is based on the binding of the most dominant uranium species to aluminol and silanol edge sites of montmorillonite, respectively to aluminol and titanol surface sites of kaolinite. For eight surface species, the log_k was determined from the experimental data using the parameter estimation code PEST together with PHREEQC.

Journal ArticleDOI
TL;DR: In this paper, principal components analysis (PCA) together with other factor analysis procedures consolidate a large number of observed variables into a smaller number of factors that can be more readily interpreted, concentrations of different constituents were correlated based on underlying physical and chemical processes such as dissociation, ion exchange, weathering or carbonate equilibrium reactions.
Abstract: The dependency of people on groundwater has increased in the past few decades due to tremendous increase in crop production, population and industrialization. Groundwater is the main source of irrigation in Shiwaliks of Punjab. In the present study the samples were collected from predetermined location as was located on satellite image on basis of spectral reflectance. Global positioning system was used to collect samples from specific locations. Principal components analysis (PCA) together with other factor analysis procedures consolidate a large number of observed variables into a smaller number of factors that can be more readily interpreted. In the present study, concentrations of different constituents were correlated based on underlying physical and chemical processes such as dissociation, ion exchange, weathering or carbonate equilibrium reactions. The PCA produced six significant components that explained 78% of the cumulative variance. The concentration of the few trace metals was found to be much higher indicating recharge due to precipitation as main transport mechanism of transport of heavy metals in groundwater which is also confirmed by PCA. Piper and other graphical methods were used to identify geochemical facies of groundwater samples and geochemical processes occurring in study area. The water in the study area has temporary hardness and is mainly of Ca–Mg–HCO3 type.

Journal ArticleDOI
TL;DR: In this paper, short-term surface settlements are predicted for twin tunnels, which are to be excavated in the chainage of 0 + 850 to 0 + 900 m between the Esenler and Kirazli stations of the Istanbul Metro line, which is 4 km in length.
Abstract: In this study, short-term surface settlements are predicted for twin tunnels, which are to be excavated in the chainage of 0 + 850 to 0 + 900 m between the Esenler and Kirazli stations of the Istanbul Metro line, which is 4 km in length. The total length of the excavation line is 21.2 km between Esenler and Basaksehir. Tunnels are excavated by employing two earth pressure balance (EPB) tunnel boring machines (TBMs) that have twin tubes of 6.5 m diameter and with 14 m distance from center to center. The TBM in the right tube follows about 100 m behind the other tube. Segmental lining of 1.4 m length is currently employed as the final support. Settlement predictions are performed with finite element method by using Plaxis finite element program. Excavation, ground support and face support steps in FEM analyses are simulated as applied in the field. Predictions are performed for a typical geological zone, which is considered as critical in terms of surface settlement. Geology in the study area is composed of fill, very stiff clay, dense sand, very dense sand and hard clay, respectively, starting from the surface. In addition to finite element modeling, the surface settlements are also predicted by using semi-theoretical (semi-empirical) and analytical methods. The results indicate that the FE model predicts well the short-term surface settlements for a given volume loss value. The results of semi-theoretical and analytical methods are found to be in good agreement with the FE model. The results of predictions are compared and verified by field measurements. It is suggested that grouting of the excavation void should be performed as fast as possible after excavation of a section as a precaution against surface settlements during excavation. Face pressure of the TBMs should be closely monitored and adjusted for different zones.

Journal ArticleDOI
TL;DR: In this article, a review of studies on coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals is presented, and coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined.
Abstract: This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.

Journal ArticleDOI
TL;DR: The root biomass distribution in alpine ecosystems (alpine meadow, alpine steppe, desert grassland and alpine desert) was investigated along a transect on the northern Tibetan Plateau in 2009 as discussed by the authors.
Abstract: The root biomass distribution in alpine ecosystems (alpine meadow, alpine steppe, desert grassland and alpine desert) was investigated along a transect on the northern Tibetan Plateau in 2009. The results showed that roots were mainly concentrated in the 0-20 cm layer, and root biomass decreased exponentially with increasing soil depth. Root biomass was estimated to be 1,381.41 +/- A 245.29 g m(-2) in the top 20 cm soil, accounting for 85% of the total root biomass. The distribution pattern of the root biomass proportion along the soil profile was similar in different alpine ecosystems. The root biomass density varied with different alpine ecosystems and the total average root biomass was 1,626.08 +/- A 301.76 g m(-2). Root biomass was significantly correlated with average relative humidity, annual precipitation and soil organic matter. This indicates that precipitation and soil organic matter might be crucial for plant growth in the study area, while temperature is not an important factor controlling root growth.

Journal ArticleDOI
TL;DR: In this paper, surface soil and sediment samples were collected from the surroundings of the Ittehad Chemical Industries Kalashah Kaku industrial zone to assess residual level of 19 organochlorine pesticides (OCPs) and identify their sources.
Abstract: Surface soil and sediment samples were collected from the surroundings of the Ittehad Chemical Industries Kalashah Kaku industrial zone to assess residual level of 19 organochlorine pesticides (OCPs) and identify their sources. DDTs and HCHs were most prevalent OCPs and general pattern of contamination followed the order: ∑DDT > ∑HCH > dicofol > endrin > heptachlor > dieldrin > endosulfan II. Total measured concentrations of HCHs (6.38–121.71 ng/g) and DDTs (759.65–1811.98 ng/g) were greater in the soil samples collected from fodder/rice fields irrigated with the factory effluents and in the surrounding of waste disposal site. Ratios of β to γ-HCH highlighted an old mixed source of technical HCH and lindane in surface soils. Predominance of p,p′-DDT and p,p′-DDE among isomers and metabolites showed that large quantity of technical grade DDT is still present in the surrounding surface soils. Six soil samples were categorized as heavy polluted soils (class III category of DDT > 1,000 ng/g), two soil samples into less polluted soil between class I and II (50–500 ng/g) and 28 soil samples as non-polluted (<50 ng/g) according to environmental quality standards for surface soils. Six soil samples were categorized as less polluted between class I and II of HCHs (50–500 ng/g). Greater concentration of DDTs and HCHs above quality guideline poses potential exposure risk to biological organisms, safety of agricultural products and human health in the surrounding of the Ittehad Chemical Industries.

Journal ArticleDOI
Qin Peng1, Yunshe Dong1, Yuchun Qi1, Shengsheng Xiao1, Yating He1, Tao Ma 
TL;DR: In this article, the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1), MN, 100 kg n ha(- 1) year (-1), LN, 50 kg N Ha(-1)/n year-1), and non-fertilization (CK, 0 kg Nha(-1/n)/n) on soil respiration were investigated in temperate grassland in Inner Mongolia, China.
Abstract: Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1); MN, 100 kg N ha(-1) year(-1); LN, 50 kg N ha(-1) year(-1)) on soil respiration compared with non-fertilization (CK, 0 kg N ha(-1) year(-1)), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q (10) varied within 1.70-1.74) but was slightly reduced in MN treatment (Q (10) = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).

Journal ArticleDOI
TL;DR: A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes as mentioned in this paper.
Abstract: A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3−, SO42−, NO3−, Cl−, F−, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved solids (TDS), HCO3−, Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect the spatial variation of water quality. Economic and social developments of the study area is closely associated with the characteristics of the hydrological network.

Journal ArticleDOI
TL;DR: In this paper, a total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 −) status of groundwater.
Abstract: A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 −) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 −, a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 − concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 − and chloride (Cl−) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl− and NO3 − (Cl− > 47 mg l−1, NO3 − > 27 mg l−1). The high correlation between NO3 − and Cl− (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.

Journal ArticleDOI
TL;DR: In this article, the effects of pH, ion type (salt and metal cations), ionic strength, cation valence, hydrated ionic radius, and solid concentration on the zeta potential of kaolinite and quartz powder in the presence of NaCl, KCl, CaCl 2, CuCl2, BaCl2 and AlCl3 solutions were determined.
Abstract: The purpose of this study was to determine the effects of pH, ion type (salt and metal cations), ionic strength, cation valence, hydrated ionic radius, and solid concentration on the zeta potential of kaolinite and quartz powder in the presence of NaCl, KCl, CaCl2, CuCl2, BaCl2, and AlCl3 solutions. The kaolinite and quartz powder have no isoelectric point (iep) within the entire pH range (3 < pH < 11). In the presence of hydrolysable metal ions, kaolinite and quartz powder have two ieps. As the cationic valence increases, the zeta potential of kaolinite and quartz powder becomes less negative. Monovalent cation, K+, yields more negative zeta potential values than the divalent cation Ba2+. As concentration of solid increases, the zeta potential of the minerals becomes more positive under acidic conditions; however, under alkaline conditions as solid concentration increases the zeta potential becomes more negative. Hydrated ionic radius also affects the zeta potential; the larger the ion, the thicker the layer and the more negative zeta potential for both kaolinite and quartz powder.

Journal ArticleDOI
TL;DR: In this paper, the adsorption process achieved equilibrium within 50min, and the adaption capacity of Cd(II) by the raw Gaomiaozi (GMZ) bentonite was about 316mg/g under the given experimental conditions.
Abstract: Bentonite has been studied extensively because of its strong adsorption capacity The Gaomiaozi (GMZ) bentonite is selected as the first choice of Chinese buffer materials for the high-level radioactive waste repository The adsorption of Cd(II) on the GMZ bentonite as a function of contact time, pH, ionic strength, bentonite content, and Cd(II) concentration was studied by using batch technique The adsorption process achieved equilibrium within 50 min, and the adsorption capacity of Cd(II) by the raw GMZ bentonite was about 316 mg/g under the given experimental conditions The adsorption ability of the GMZ bentonite increases with increasing pH at 2–12 but decreases with increasing ionic strength from 001 to 01 M KNO3 The uptake of Cd(II) on this bentonite increases in response to an increase of the bentonite content Chemisorption was considered to be a key of process and adsorption mechanism could be concluded to be complexation, ion exchange, and electrostatic interaction The equilibrium adsorption data were fitted to the second-order kinetic equation Furthermore, the Langmuir adsorption isotherm model was used for the description of the adsorption process very well