scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Fluid Mechanics in 2011"


Journal ArticleDOI
TL;DR: In this paper, the results of a comprehensive study addressing the non-aerated region of skimming flow in steep stepped spillways are presented and discuss the importance of this region in small dams and/or spillways with high specific discharges.
Abstract: We present and discuss the results of a comprehensive study addressing the non-aerated region of the skimming flow in steep stepped spillways. Although flows in stepped spillways are usually characterized by high air concentrations concomitant with high rates of energy dissipation, the non-aerated region becomes important in small dams and/or spillways with high specific discharges. A relatively large physical model of such spillway was used to acquire data on flow velocities and water levels and, then, well-resolved numerical simulations were performed with a commercial code to reproduce those experimental conditions. The numerical runs benefited from the ability of using multi-block grids in a Cartesian coordinate system, from capturing the free surface with the TruVOF method embedded in the code, and from the use of two turbulence models: the \({k{-}\varepsilon}\) and the RNG\({k{-}\varepsilon}\) models. Numerical results are in good agreement with the experimental data corresponding to three volumetric flow rates in terms of the time-averaged velocities measured at diverse steps in the spillway, and they are in very satisfactory agreement for water levels along the spillway. In addition, the numerical results provide information on the turbulence statistics of the flow. This work also discusses important aspects of the flow, such as the values of the exponents of the power-law velocity profiles, and the characteristics of the development of the boundary layer in the spillway.

118 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify the different flow regimes that may be found within such gaps, using Morris' classical definitions of skimming flow, wake interference flow and isolated roughness flow as a template, and provide quantitative measurements of the loci of each flow regime within that parameter space for these experiments.
Abstract: Analyses of results from laboratory flume experiments are presented in which flow within gaps in canopies of flexible, submerged aquatic vegetation simulations is investigated The aims of the work are (a) to identify the different flow regimes that may be found within such gaps, using Morris’ classical definitions of skimming flow, wake interference flow and isolated roughness flow as a template, (b) to determine the parameter space in which those flow regimes are most consistently delineated, and (c) to provide quantitative measurements of the loci of each flow regime within that parameter space for these experiments The sedimentary and biological implications of each flow regime are also discussed The results show that five flow regimes may be identified, expanding on Morris’ original set of three The five are: (i) skimming flow; (ii) recirculation flow; (iii) boundary layer recovery; (iv) canopy through-flow; and (v) isolated roughness flow, the last being assumed to occur in some cases though it is not directly observed in these experiments A Reynolds number based on the canopy overflow speed and the gap depth, and the gap aspect ratio are found to be the key parameters that determine these flow regimes, though a Froude number is found to be important for determining bed shear stress, and the length of leaves overhanging the gap from the upstream canopy is found to be important in determining the location of flow recirculation cells within the gap

77 citations


Journal ArticleDOI
TL;DR: A novel variant of the popular projection method for solving the Navier–Stokes equations has been developed and applied to produce fast and reasonably accurate parallel computational fluid dynamics (CFD) solutions for flow in complex urban areas.
Abstract: In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a novel variant of the popular projection method for solving the Navier–Stokes equations has been developed and applied to produce fast and reasonably accurate parallel computational fluid dynamics (CFD) solutions for flow in complex urban areas. This model, called QUIC-CFD represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. This paper details the solution procedure and validates this model for various simple and complex urban geometries.

64 citations


Journal ArticleDOI
TL;DR: In this article, a series of numerical modeling and laboratory experiments on waveform evolution of a depression internal solitary wave (ISW) in a nearly stratified two-layer fluid system, in which specific water depth ratios above the horizontal plateau of the trapezoidal obstacle were arranged to facilitate the occurrence of waveform inversion.
Abstract: Internal solitary waves (ISWs) have been detected in many parts of the world oceans, particularly over slope-shelf topography, on which signature of waveform inversion has been identified. The effects of these waves on engineering operations and ecological process have also been reported in the literature. This article reports the results of a series of numerical modeling and laboratory experiments on waveform evolution of a depression ISW in a nearly stratified two-layer fluid system, in which specific water depth ratios above the horizontal plateau of the trapezoidal obstacle were arranged to facilitate the occurrence of waveform inversion. Classifications of waveform instability (no instability, shear instability and overturning with breaking) on the slope are confirmed in the present laboratory study. Numerical results for waveform variation are also found in fair agreement with the laboratory measurements for cases without waveform inversion and minor internal breaking. Moreover, laboratory results revealed that the depth ratio of the stratified two-layer fluid above the plateau and the magnitude of the incident ISW were the two most important factors for promoting waveform inversion beyond a turning point, in addition to the requirement of a sufficient distance from the shoulder of the trapezoidal obstacle. These factors also influenced the outcome of the shoaling process, energy dissipation, internal wave breaking and turbulent mixing on the front slope, as well as the likelihood of waveform inversion on the horizontal plateau. Contrary to the common perception, it was also observed, at least from the results of the present laboratory experiments, that not all the incident ISWs of depression would produce waveform inversion on the plateau, where the upper layer was physical greater than the bottom layer, unless moderate incident wave was provided. The outcome might also be attributed to the limited distance from the shoulder onto the plateau in the present laboratory setup. However, once waveform inversion occurred on the plateau, it was found, among others, that: (1) the amplitude of the transmitted leading crest and trough might be as low as 30 and 20%, respectively, to the amplitude of the incident wave in depression; (2) the characteristic wavelength of the transmitted leading trough doubled while that of the crest was asymptotically one-half of the incident wavelength, despite the wide range variation in the depth ratios above the plateau; and (3) the transmitted potential wave energy of the leading crest contained 30% of the incident energy. Based on the results of present laboratory experiments, the range for the non-dimensional parameter α, which indicates the effect of nonlinearity and the promotion of waveform inversion on horizontal plateau, will be proposed.

48 citations


Journal ArticleDOI
TL;DR: In this article, the environmental, ecological and cultural impacts of tidal bores are reviewed, explained and discussed, and the importance of the cultural heritage in many regions of the world is discussed.
Abstract: A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising. It forms during the spring tide conditions when the tidal range exceeds 5–6 m and the flood tide is confined to a narrow funnelled estuary with low freshwater levels. A tidal bore is associated with a massive mixing of the estuarine waters that stirs the organic matter and creates some rich fishing grounds. Its occurrence is essential to many ecological processes and the survival of unique eco-systems. The tidal bore is also an integral part of the cultural heritage in many regions: the Qiantang River bore in China, the Severn River bore in UK, the Dordogne River in France. In this contribution, the environmental, ecological and cultural impacts of tidal bores are reviewed, explained and discussed.

40 citations


Journal ArticleDOI
TL;DR: In this paper, the kinematics of hydrodynamic turbulent flows developed in vertical slot fishways (VSF) were studied in detail in flow patterns not yet published to date for the purposes of modifying existing devices and to allow for the passage of all fishes, particularly the smaller species.
Abstract: The kinematics of hydrodynamic turbulent flows developed in vertical slot fishways (VSF) was studied in detail in flow patterns not yet published to date for the purposes of modifying existing devices and to allow for the passage of all fishes, particularly the smaller species. A transparent device based on the typical prototype dimensions of VSF in France was constructed for the experiment. The velocity measurements were carried out by Particle Image Velocimetry (PIV). These measurements were used to determine the various kinematics parameters characterizing the flow. From the dimensions and slope of the fishway, two flow topologies highlighting the swirling pattern were proposed. The method of Proper Orthogonal Decomposition (POD) was used to undertake unsteady and energetic analyses to characterize the main phases of flow evolution that fish passing through the passage may encounter.

38 citations


Journal ArticleDOI
TL;DR: In this paper, an artificial neural network (ANN) model is developed for predicting the longitudinal dispersion coefficient in natural rivers and the model uses few rivers' hydraulic and geometric characteristics, that are readily available, as the model input, as well as the target output, and the output is the longitudinal flow coefficient (K).
Abstract: An artificial neural network (ANN) model is developed for predicting the longitudinal dispersion coefficient in natural rivers The model uses few rivers’ hydraulic and geometric characteristics, that are readily available, as the model input, and the target output is the longitudinal dispersion coefficient (K) For performance evaluation of the model, using published field data, predictions by the developed ANN model are compared with those of other reported important models Based on various performance indices, it is concluded that the new model predicts the longitudinal dispersion coefficient more accurately Sensitive analysis performed on input parameters indicates stream width, flow depth, stream sinuosity, flow velocity, and shear velocity to be the most influencing parameters for accurate prediction of the longitudinal dispersion coefficient

38 citations


Journal ArticleDOI
TL;DR: In this paper, an idealised two-dimensional laboratory model of tsunamis generated by submarine landslides is described, which includes a semi-elliptical rigid landslide with a height to length ratio of 0.052 sliding down a 15° slope.
Abstract: An idealised two-dimensional laboratory model of tsunamis generated by submarine landslides is described. The experimental configuration corresponds to the benchmark configuration suggested by other researchers in the international tsunami community. It comprises a semi-elliptical rigid landslide with a height to length ratio of 0.052 sliding down a 15° slope. The initial landslide submergence and specific gravity are varied, the second of which primarily determines the initial landslide acceleration. In these experiments the landslide motion is generally well approximated as consisting of two periods of constant acceleration. The first phase of positive acceleration finishes as the landslide reaches the base of the slope, while the second period of a slower deceleration continues until the landslide comes to rest along the horizontal base of the tank. A novel experimental technique, which utilises laser-induced fluorescence (LIF), is employed to measure the free surface displacement over the entire space and time domains. This enables the wave potential energy field to be computed directly and provides a vivid picture of the wave generation and development process. Particle tracking velocimetry provides detailed information on the landslide motion and also some data on the sub-surface velocity field. Experimental runs require multiple repeats (typically 35–50) of the same setup in order to capture the entire wave field with the desired resolution. Thus high level experimental repeatability is required, and this is demonstrated. A range of parameters relevant to hazard management are presented and discussed. Maximum crest and trough amplitudes of the offshore propagating waves are shown to be approximately proportional to the initial landslide acceleration and somewhat less strongly dependent on the initial landslide submergence. The maximum wave run-up experienced at the shoreline is shown to depend almost linearly on the magnitude of a high deceleration that occurs for a short period when the landslide nears the toe of the slope. The initial submergence and initial acceleration do not directly determine the maximum wave run-up, although for these experiments they impact indirectly on the magnitude of the deceleration. The efficiency of the energy transfer from the landslide potential energy to the wave field potential energy reaches values of up to 6% and is found to be strongly dependent on the initial submergence. However because of the link between the landslide mass and its acceleration, this efficiency is almost completely independent of the initial acceleration. The results from a numerical model based on linear, inviscid and irrotational wave theory, and solved with the boundary element method, are compared with the data from the experimental program. The numerical model accurately produces the generated sequence of wave crests and troughs, but slightly overpredicts their phase speed by between 2 and 4%. For all other parameters the numerical model predictions are within 25% of the experimental values, although this includes both under- and overprediction for the range of independent parameters covered.

35 citations


Journal ArticleDOI
TL;DR: The present study focuses on understanding the transport of dissolved wastes from aquaculture pens in near-coastal environments using the hydrodynamics code SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator), which employs unstructured grids to compute flows in the coastal ocean at very high resolution.
Abstract: Marine aquaculture is expanding rapidly without reliable quantification of efflu- ents. The present study focuses on understanding the transport of dissolved wastes from aquaculture pens in near-coastal environments using the hydrodynamics code SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simula- tor), which employs unstructured grids to compute flows in the coastal ocean at very high resolution. Simulations of a pollutant concentration field (in time and space) as a function of the local environment (bathymetry), flow conditions (tides and wind-induced currents), and the location of the pens were performed to study their effects on the evolution of the waste

34 citations


Journal ArticleDOI
TL;DR: In this article, the influence of block spacing and angle is investigated by the mean of a 2D high resolution computational fluid dynamics model, and it is shown that for a limited number of blocks, upstream turbulence still dominates the degree of the total mixing within the farm, and that total flow reduction is little affected by the orientation of the blocks.
Abstract: Aquaculture structures are responsible for flow disturbances that extend over a large range of scales. In the case of shellfish aquaculture, those scales extend from the size of an individual shellfish to the size of a whole farm with intermediate scales being the size of a shellfish structure or of a block of shellfish structures. The influence of block spacing and angle is investigated by the mean of a 2D high resolution computational fluid dynamics model. Block angle is found to be the main relevant parameter controlling to a large extent the mixing generated by the shellfish structures. Strong sensitivity is found for small angles. Nevertheless, it is shown that for a limited number of blocks, upstream turbulence still dominates the degree of the total mixing within the farm, and that total flow reduction is little affected by the orientation of the blocks. A simple analytical model is presented that predicts most of the numerical results.

32 citations


Journal ArticleDOI
TL;DR: In this paper, the results of the Joint Urban 2003 experiment in Oklahoma City were investigated for concentration time series measured with fast-response analyzers during six 30-min continuous releases.
Abstract: Statistics are investigated for concentration time series measured with fast-response analyzers during the Joint Urban 2003 experiment in Oklahoma City. Data collected at nine different sites for a total of six 30-min continuous releases were analyzed. After a short description of the measurements and meteorological conditions prevailing during the two chosen intensive observation periods, the variation of mean concentrations, fluctuation intensity, peak-to-mean ratio, concentration percentiles, and intermittency are discussed. High intermittency is only observed at sites close to the edge of the urban plumes. Even though the meteorological conditions during all six releases were quite similar, all concentration parameters generally show great variability. This highlights the difficulty of obtaining representative statistics from full-scale experiments, during which only relatively short time series can be recorded and diurnal variations of weather patterns are typical. In addition to the concentration statistics, the measured cumulative probability (CDF) and exceedance probablity (EDF) functions are compared with two-parametric gamma and 3-parametric clipped-gamma CDFs and EDFs. It can be shown that both gamma distributions agree well with the observations particularly in the upper tail of the distributions, and that realistic 95 and 98 concentration percentiles are predicted for plumes dispersing in an urban environment. The clipped-gamma distribution, which better captures important dispersion physics, performs slightly better for highly intermittent signals but its performance depends on which relationship between intermittency and fluctuation intensity is assumed, and is thus not necessarily a better choice for practical applications. The issues of limited statistical representativeness of the analyzed data is further addressed in a second part of this paper which includes the analysis of wind-tunnel concentration time series.

Journal ArticleDOI
TL;DR: In this article, a soft computational technique is applied to predict sediment loads in three Malaysian rivers using feed forward-back propagated (schemes) artificial neural network (ANNs) architecture.
Abstract: A soft computational technique is applied to predict sediment loads in three Malaysian rivers. The feed forward-back propagated (schemes) artificial neural network (ANNs) architecture is employed without any restriction to an extensive database compiled from measurements in Langat, Muda, Kurau different rivers. The ANN method demonstrated a superior performance compared to other traditional sediment-load methods. The coefficient of determination, 0.958 and the mean square error 0.0698 of the ANN method are higher than those of the traditional method. The performance of the ANN method demonstrates its predictive capability and the possibility of generalization of the modeling to nonlinear problems for river engineering applications.

Journal ArticleDOI
TL;DR: In this paper, the authors describe the exchange flow between a region with open water and a part-depth porous obstruction, which represents the thermally-driven exchange that occurs between open waters and floating vegetation, and develop a model that predicts the flow rates within each layer based on energy considerations.
Abstract: This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating vegetation. The partial-depth porous obstruction represents the root layer, which does not penetrate to the bed. Initially, a vertical wall separates the two regions, with fluid of higher density in the obstructed region and fluid of lower density in the open region. This density difference represents the influence of differential solar heating due to shading by the vegetation. For a range of root density and root depths, the velocity distribution is measured in the lab using PIV. When the vertical wall is removed, the less dense water flows into the obstructed region at the surface. This surface flow bifurcates into two layers, one flowing directly through the root layer and one flowing beneath the root layer. A flow directed out of the vegetated region occurs at the bed. A model is developed that predicts the flow rates within each layer based on energy considerations. The experiments and model together suggest that at time- and length-scales relevant to the field, the flow structure for any root layer porosity approaches that of a fully blocked layer, for which the exchange flow occurs only beneath the root layer.

Journal ArticleDOI
TL;DR: In this article, the characteristics of near-critical free-surface flows are reanalysed based on a model accounting for both the streamline curvature and friction effects, which highlights the main frictional features of the flow profiles.
Abstract: An open channel flow with a flow depth close to the critical depth is characterised by a curvilinear streamline flow field that results in steady free surface undulations. Near critical flows of practical relevance encompass the undular hydraulic jump when the flow changes from supercritical (F > 1) to subcritical (F 1). So far these flows were mainly studied based on ideal fluid flow computations, for which the flow is assumed irrotational and, thus, shear forces are absent. While the approach is accurate for critical flow conditions (F = 1) in weir and flumes, near-critical flows involve long distances reaches, and the effect of friction on the flow properties cannot be neglected. In the present study the characteristics of near-critical free-surface flows are reanalysed based on a model accounting for both the streamline curvature and friction effects. Based on the improved model, some better agreement with experimental results is found, thereby highlighting the main frictional features of the flow profiles.

Journal ArticleDOI
TL;DR: In this article, an analysis of concentration time series measured in a boundary-layer wind tunnel at the University of Hamburg is presented, where the concentration statistics, as well as concentration probability density and exceedance probability (EDF) functions were computed for street-and roof-level sites for three different wind directions.
Abstract: An analysis of concentration time series measured in a boundary-layer wind tunnel at the University of Hamburg is presented. The measurements were conducted with a detailed aerodynamic model of the Oklahoma City (OKC) central business district (CBD) at the scale of 1:300 and were part of the Joint Urban 2003 (JU2003) project. Concentration statistics, as well as concentration probability density (PDF) and exceedance probability (EDF) functions were computed for street- and roof-level sites for three different wind directions. Taking into account the different length scales and wind speeds in the wind-tunnel (WT) and full-scale experiments, dimensionless concentrations and a dimensionless time scale are computed for the comparison with data from the JU2003 full-scale tracer experiments, conducted in OKC in 2003. Using such dimensionless time, the WT time series cover a ~20 times longer time span than the JU2003 full-scale time series, which are analysed in detail in an accompanying, first part of this paper. The WT time series are thus divided into 20 consecutive blocks of equal length and the statistical significance of parameters based on relatively short records is assessed by studying the variability of the concentration statistics and probability functions for the different blocks. In particular at sites closer to the plume edge, the results for the individual blocks vary significantly and at such sites statistics from short records are not very representative. While the location of three sampling sites in the WT closely matched the sites during the full-scale experiments, the prevailing wind directions during the JU2003 releases were not exactly matched. The comparison between full-scale and WT concentration parameters should thus primarily be interpreted in a qualitative rather than direct quantitative sense. Given the differences in mean wind directions and concerns about the representativeness of full-scale concentration statistics, the WT and full-scale results compared well. The 98 percentile concentrations for almost all full-scale releases analyzed are within the scatter of the percentiles observed in the block analysis of the WT time series. Furthermore, the concentration percentiles appear linearly correlated with the fluctuation intensities and the linear relationships determined in the wind tunnel agree well with full-scale results.

Journal ArticleDOI
TL;DR: In this paper, a series of Large Eddy Simulations (LES) were performed to investigate the penetration of starting buoyant jets and found that the penetration rate increases with an increasing buoyancy flux.
Abstract: A series of Large Eddy Simulations (LES) are performed to investigate the penetration of starting buoyant jets. The LES code is first validated by comparing simulation results with existing experimental data for both steady and starting pure jets and lazy plumes. The centerline decay and the growth rate of the velocity and concentration fields for steady jets and plumes, as well as the simulated transient penetration rate of a starting pure jet and a starting lazy plume, are found to compare well with the experiments. After validation, the LES code is used to study the penetration of starting buoyant jets with three different Reynolds numbers from 2000 to 3000, and with a wide range of buoyancy fluxes from pure jets to lazy plumes. The penetration rate is found to increase with an increasing buoyancy flux. It is also observed that, in the initial Period of Flow Development, the two penetrative mechanisms driven by the initial buoyancy and momentum fluxes are uncoupled; therefore the total penetration rate can be resolved as the linear addition of these two effects. A fitting equation is proposed to predict the penetration rate by combining the two independent mechanisms.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the impact of building aspect ratio (building-height-to-street-canyon-width-ratio), wind speed and surface and air-temperature difference (� θs−a) on the heating environment within street canyon.
Abstract: This study investigates the impact of building aspect ratio (building-height-to- street-canyon-width-ratio), wind speed and surface and air-temperature difference (� θs−a) on the heating environment within street canyon. The Reynolds-averaged Navier-Stokes (RANS) and energy transport equations were solved with Renormalization group (RNG) theory version of k-e turbulence model. The validation process demonstrated that the model could be trusted for simulating air-temperature and velocity trends. The temperature and velocity patterns were discussed in idealized street canyons of different aspect ratios (0.5- 2.0) with varying ambient wind speeds (0.5-1.5 m/s) and � θs−a (2-8 K). Results show that air-temperatures are directly proportional to bulk Richardson number (Rb) for all but ground heating situation. Conversely, air-temperatures increase significantly across the street can- yon with a decrease in ambient wind speed; however, the impact of � θs−a was negligible. Clearly, ambient wind speed decreases significantly as it passes over higher AR street can- yons. Notably, air-temperatures were the highest when the windward wall was heated and the least during ground heating. Conversely, air-temperatures were lower along the windward side but higher within the street canyon when the windward wall was heated.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of bridge piers on the propagation of undular tidal bores and characteristics of the free-surface undulation profiles of a macro-tidal estuary.
Abstract: A tidal bore may occur in a macro-tidal estuary when the tidal range exceeds 4.5–6 m and the estuary bathymetry amplifies the tidal wave. Its upstream propagation induces a strong mixing of the estuarine waters. The propagation of undular tidal bores was investigated herein to study the effect of bridge piers on the bore propagation and characteristics. Both the tidal bore profile and the turbulence generated by the bore were recorded. The free-surface undulation profiles exhibited a quasi-periodic shape, and the potential energy of the undulations represented up to 30% of the potential energy of the tidal bore. The presence of the channel constriction had a major impact on the free-surface properties. The undular tidal bore lost nearly one third of its potential energy per surface area as it propagated through the channel constriction. The detailed instantaneous velocity measurements showed a marked effect of the tidal bore passage suggesting the upstream advection of energetic events and vorticity “clouds” behind the bore front in both channel configurations: prismatic and with constriction. The turbulence patches were linked to some secondary motions and the proposed mechanisms were consistent with some field observations in the Daly River tidal bore. The findings emphasise the strong mixing induced by the tidal bore processes, and the impact of bridge structures on the phenomenon.

Journal ArticleDOI
TL;DR: In this paper, a wind tunnel study on the erosion of a conical sand pile, exposed or protected by a fence with porosities of 0, 70, and 83%, is shown.
Abstract: There are many industrial sites where open aggregate conical piles exist to store granular materials, like coal, industrial residuals, or other minerals. Usually these storage piles are placed in open areas, making them susceptible to wind erosion, which can create health, environmental, and/or economical concerns. It is common to minimize the dust emission through the placement of windbreaks in the vicinity of the storage piles, which reduces the wind speed in the vicinity of the pile’s surface. In this work, some experimental results from a wind tunnel study on the erosion of a conical sand pile, exposed or protected by a fence with porosities of 0, 70, and 83%, are shown. For the sheltered cases, the windbreak was placed at several distances from the pile’s leading edge, ranging from H to 4H, where H is the initial height of the non-eroded pile. The evolution of the shape of the sand pile is shown, at different instances in time, and the pile deformation quantified, using a novel experimental setup developed for wind erosion studies. This information might be regarded as a useful dataset for the benchmark of computational models aiming to produce the transient simulation of the aeolian erosion of stockpiles. The CFD results are comprised of the modeling of several experimental scenarios. The computational results for the surface wind velocity show a good correlation with the initial deformation of the pile. Based on the results, the isocontours of (u s /u r ) presented might be regarded as a good basis for the estimation of the pile shear velocity.

Journal ArticleDOI
TL;DR: In this paper, a 1DV numerical model for cohesive sediment transport was used to study some of the aforementioned factors in affecting tidal-driven sediment fluxes in idealized condition, and the effects of nonlinear intra-tidal interaction between tidal velocity and tidal level fluctuations was shown to mainly cause seaward transport, which is the most significant under progressive wave system (phase difference 90°).
Abstract: The flux of cohesive sediment in an estuary is determined by many factors, including tidal asymmetry, wave effect, fluvial influence, phase difference between tidal velocity and tidal level fluctuations, sediment properties, flocculation, bed erodibility, bathymetry effect and other nonlocal effects. Our capability in predicting sediment fluxes in tide-dominant environments is critical to the morphodynamics and water quality of estuaries. Due to the difficulties in carrying out detailed measurement of sediment flux with high spatial and temporal resolutions, an one-dimensional-vertical (1DV) numerical model for cohesive sediment transport, previously verified and calibrated with field measured cohesive sediment concentration data, is utilized here to study some of the aforementioned factors in affecting tidal-driven sediment fluxes in idealized condition. Tidal-averaged sediment flux is shown to be correlated with tidal velocity skewness with a linear relationship. This linear relationship is different from that of non-cohesive sediment and it is demonstrated here to be mainly due to variable critical shear stress implemented for the mud bed in order to parameterize consolidation. The reason that tidal velocity skewness causes tidal-averaged residual sediment transport is shown to be due to nonlinear intra-tidal interactions between flow velocity and sediment concentration. Moreover, the effects of nonlinear intra-tidal interaction between tidal velocity and tidal level fluctuations is shown to mainly cause seaward transport, which is the most significant under progressive wave system (phase difference 90°) and almost negligible for standing wave system (phase difference 0°).

Journal ArticleDOI
TL;DR: In this article, the authors presented the results from new experimental investigations conducted in a large rectangular channel, where detailed unsteady velocity measurements were performed with a high temporal resolution using acoustic Doppler velocimetry and non-intrusive free-surface measurement devices.
Abstract: A positive surge is a unsteady open channel flow resulting from the rapid rise of the free-surface. The phenomenon may be observed in water supply canals and channels as well as in some estuaries during spring tidal conditions. The formation and development of positive surges can be predicted using the method of characteristics and shallow water equations. The paper is the second part of a study presenting the results from new experimental investigations conducted in a large rectangular channel. Detailed unsteady velocity measurements were performed with a high temporal resolution using acoustic Doppler velocimetry and non-intrusive free-surface measurement devices. Several experiments were conducted with the same initial discharge (Q = 0.060 m3/s) and six different gate openings after closure resulting in both non-breaking undular and breaking bores. A comparison between main features of the undular surges with literature theories demonstrated that the experimental data were mostly in agreement with Andersen’s theory. The analysis of unsteady flow field including Reynolds stresses confirmed and extended previous findings about positive surge hydrodynamics.

Journal ArticleDOI
TL;DR: In this paper, an analytical, experimental and numerical study of boundary gravity currents propagating through a two-layer stratified ambient of finite vertical extent is presented, where gravity currents are assumed to originate from a lock-release apparatus; the (heavy) gravity current fluid is assumed to span the entire channel depth, H, at the initial instant.
Abstract: An analytical, experimental and numerical study of boundary gravity currents propagating through a two-layer stratified ambient of finite vertical extent is presented. Gravity currents are supposed to originate from a lock-release apparatus; the (heavy) gravity current fluid is assumed to span the entire channel depth, H, at the initial instant. Our theoretical discussion considers slumping, supercritical gravity currents, i.e. those that generate an interfacial disturbance whose speed of propagation matches the front speed, and follows from the classical analysis of Benjamin (J Fluid Mech 31:209–248, 1968). In contrast to previous investigations, we argue that the interfacial disturbance must be parameterized so that its amplitude can be straightforwardly determined from the ambient layer depths. Our parameterization is based on sensible physical arguments; its accuracy is confirmed by comparison against experimental and numerical data. More generally, measured front speeds show positive agreement with analogue model predictions, which remain strictly single-valued. From experimental and numerical observations of supercritical gravity currents, it is noted that this front speed is essentially independent of the interfacial thickness, δ, even in the limiting case where δ = H so that the environment is comprised of a uniformly stratified ambient with no readily discernible upper or lower ambient layer. Conversely, when the gravity current is subcritical, there is a mild increase of front speed with δ. Our experiments also consider the horizontal distance, X, at which the front begins to decelerate. The variation of X with the interface thickness and the depths and densities of the ambient layers is discussed. For subcritical gravity currents, X may be as small as three lock lengths whereas with supercritical gravity currents, the gravity current may travel long distances at constant speed, particularly as the lower layer depth diminishes.

Journal ArticleDOI
TL;DR: In this paper, a correlation between the erosion rate and the velocity is proposed, and the results clearly show the erosion process is strongly dependent upon time, velocity field and surface disturbances.
Abstract: Erosion is a common phenomenon in nature, and it may cause a wide range of problems such as air pollution, and destruction of agricultural land, shelters and stockpiles. The present work deals with stockpiles, which have their profiles described by a sinus function or by similar trigonometric functions. Analysis of the erosion by air flow over these piles will provide for further understanding of the erosion underlying mechanisms and, moreover, how to control them and eventually to prevent them. To this purpose, different experimental tests are conducted for a pile with a sinuous profile, and particular attention is given to the time development of the profile due to the erosion process; the effect of the air velocity is also studied by selecting different velocities. In addition, the flow over several deformed piles is numerically predicted using the CFX software; the results clearly show the erosion process is strongly dependent upon time, velocity field and surface disturbances. A correlation between the erosion rate and the velocity is proposed.

Journal ArticleDOI
TL;DR: In this article, the effects of air-water interactions on turbulence structure through the whole depth region were investigated and it was inferred that such a near-bed turbulence may be influenced significantly by these air and water interfacial fluctuations accompanied with free-surface velocity shear and wind-induced water waves.
Abstract: When wind-induced water waves appear over the free-surface flows such as natural rivers and artificial channels, large amounts of oxygen gas and heat are transported toward the river bed through the interface between water and wind layers. In contrast, a bed region is a kind of turbulent boundary layer, in which turbulence generation and its transport is promoted by the production of bed shear stress. In particular, coherent hairpin vortices, together with strong ejection events toward the outer part of the layer, promote mass and momentum exchanges between the inner and outer layers. It is inferred that such a near-bed turbulence may be influenced significantly by these air–water interfacial fluctuations accompanied with free-surface velocity shear and wind-induced water waves. However, these wind effects on the wall-turbulence structure are less understood. To address these exciting and challenging topics, we conducted particle imagery velocimetry (PIV) measurements in open-channel flows combined with air flows, and furthermore the present measured data allows us to investigate the effects of air–water interactions on turbulence structure through the whole depth region.

Journal ArticleDOI
TL;DR: In this article, the capability of an oceanic numerical model dynamic and thermodynamically coupled to a three-dimensional mesoscale atmospheric numerical model to simulate the basic features of the air-sea interaction in the coastal upwelling area of Cabo Frio (RJ, Brazil) was investigated.
Abstract: This work investigates the capability of an oceanic numerical model dynamic and thermodynamically coupled to a three-dimensional mesoscale atmospheric numerical model to simulate the basic features of the air-sea interaction in the coastal upwelling area of Cabo Frio (RJ, Brazil). The upwelling/downwelling regime is an important feature in the oceanic circulation of Cabo Frio and determines the sustainability of local ecosystems. This regimeispredominantlydrivenbytheatmosphericcirculationandiswelldocumented,being suitabletobeusedastestreferenceforatmosphericandoceaniccoupledanduncoupledmod- els. The oceanic boundary conditions, coastline shape and coupling effect have been tested. The uncoupled oceanic model forced by a NE (SW) wind field generates a realistic upwell- ing (downwelling) phenomenon regardless of the proximity of the lateral boundary and how realistic is the shape of the coastline. The atmospheric-oceanic coupled model generates an upwelling location and intensity similar to the uncoupled simulation, but the upwelling is gradually enhanced by the sea-breeze circulation. It also generates vertical profiles of mixing ratio that compare better to the observations than the uncoupled simulation and air potential temperature and wind vertical profiles that represent particular features of the atmospheric circulation at Cabo Frio.

Journal ArticleDOI
TL;DR: In this article, a simple formulation for TKE under a two-way traffic pattern from the balance of production and dissipation of turbulence was obtained for three different traffic density regimes: light, intermediate, and heavy.
Abstract: Low wind speed conditions are often associated with poor air quality in urban areas, especially near roadways. Predictions of pollutant concentration under such conditions, i.e. low wind-speeds and near road locations, are, however, complicated by the role of traffic produced turbulence (TPT) on pollutant mixing and dilution. Existing dispersion models consider the effect of TPT on pollutant concentrations near roadways, accounting for parameters such as vehicle intensity, vehicle speeds, etc, but do not explicitly account for the contribution of two-way traffic interaction on the pollutant dispersion parameter. The turbulent kinetic energy (TKE) resulting from a two-way traffic condition will be higher than that with a one-way traffic pattern. Here, we obtain a simple formulation for TKE under a two-way traffic pattern from the balance of production and dissipation of turbulence. Considering the vorticity generated by the two-way traffic and determining the equivalent drag coefficient, an expression for TKE due to the two-way traffic interaction was obtained for three different traffic density regimes: light, intermediate, and heavy. The model predictions are validated by comparison with published data from a field study. An improved parameterization of the TPT considering the two-way traffic interaction effect is seen to significantly improve predictions of near roadway pollutant concentrations.

Journal ArticleDOI
TL;DR: In this article, a large eddy simulation of mass transfer in the flow around a surface-mounted finite-height circular cylinder was presented, where a tracer was released at various levels upstream of the cylinder, and the effect of the release position in the subsequent spreading and dilution of the plumes was analyzed.
Abstract: This paper presents a large eddy simulation of mass transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5 and a Reynolds number based on the cylinder diameter of 44000. The approach flow boundary layer had a thickness of about 10% of the cylinder height. A tracer was released at various levels upstream of the cylinder. The effect of the release position in the subsequent spreading and dilution of the plumes is analyzed. It is found that a tracer released at the top or at mid-height is entrained into the recirculation zone behind the cylinder, and therefore presents similar plume evolution in the far wake in both cases. If the tracer is released at around three-quarters of the height of the cylinder, it is not significantly entrained by the main recirculation region, leading to smaller rates of spreading of the plume. Finally, if the tracer is released near the floor, the plume is entrained by the horseshoe vortex that wraps around the cylinder, leading to a large lateral spreading of the plume, remaining always near the floor.

Journal ArticleDOI
TL;DR: In this article, the authors employed computational and experimental approaches for the structural design of a natural windbreak, which is intended to find the optimum tree shelterbelt to obviate the uneven wind speed distribution across the width dimension of a high-level competition rowing channel.
Abstract: Computational and experimental approaches are employed for the structural design of a natural windbreak. It is intended to find the optimum tree shelterbelt to obviate the uneven wind speed distribution across the width dimension of a high-level competition rowing channel. The experimental results, obtained in a wind tunnel, and consisting of erosion-technique images and local wind-speed measurements, are used to benchmark the computational model. A good agreement between the two sets of results is obtained. Several windbreak configurations, considering one or two rows of different cross-sectional shape and porosity, are computationally modeled. For the shortest row a rectangular shape, with porosity of 35%, is considered; for the tallest row, which aims the modeling of a poplar tree, a porosity of 87% is assumed at the trunk level, and 60% at the crown. The optimum shelterbelt consists of two rows, composed by bamboo and poplar trees, which allows the attainment of a low and nearly uniform wind flow across the width of the channel.

Journal ArticleDOI
TL;DR: In this paper, the results of dust air pollution produced in a landfill site are analyzed through CFD3D (Computational Fluid Dynamics) by joining the LIDAR (Light Detection and Ranging) technique and Ansys CFX 10.0 software.
Abstract: Landfill sites have been the most common way of eliminating solid urban waste, as well as that of public and mining wastes. Landfill sites are a constant source of environmental pollution and wind is the most important contributing factor to air pollution, due to the erosion which it produces over the landfill site surfaces, transporting dust away from the source point. This causes serious risks for human health and general dirt in the surrounding areas of the landfill site. The result of dust air pollution produced in a landfill site is analysed through CFD3D (Computational Fluid Dynamics) by joining the LIDAR (Light Detection and Ranging) technique and Ansys CFX 10.0 software. The CFD simulations determine the wind velocity distribution on the landfill site surface and the different particle threshold friction velocities which determine the dust emission in multiphase simulations (air-particles). These simulations are validated from field data obtained in three measurement programmes for each type of landfill site surface treatment which has been studied. It was determined that the superficial landfill site treatment with the lowest air pollution is tall grass and bushes. The methodology used can be applied to the dust emission calculation in the design or evaluation of other landfill sites.

Journal ArticleDOI
TL;DR: In this paper, a new theoretical model for 2D seepage flow is proposed based on Fawer's theory for curved flows, from which a second-order equation results describing the surface.
Abstract: Seepage flow is an agent related to the transport and dispersion of contamination in groundwater. Steady two-dimensional seepage flow is governed by Laplace’s equation, for which several solution techniques are available. Because computations are complex from a practical point of view, simplified models encompass the Dupuit-Forchheimer approach assuming a horizontal flow. However this approach is inaccurate in seepage problems involving steep drawdowns. In this research, a new theoretical model for 2D seepage flow is proposed based on Fawer’s theory for curved flows Castro-Orgaz (Environ Fluid Mech 10(3):2971–2310, 2010), from which a second-order equation results describing the seepage surface. From this development, a numerical solution for the rectangular dam problem based on the second-order model is presented, whereas a simple first-order equation is found to describe flow to drains under a uniform rainfall. The results of this new model are compared with the full 2D solution of Laplace’s equation for typical test cases, resulting in an excellent agreement.