scispace - formally typeset
Search or ask a question

Showing papers in "Fems Microbiology Letters in 2017"


Journal ArticleDOI
TL;DR: This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response.
Abstract: Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.

135 citations


Journal ArticleDOI
TL;DR: The potential role of P. aeruginosa virulence factors including phenazines, quorum sensing, biofilm formation and siderophores along with host factors such as Tamm-Horsfall protein, osmotic stress and iron specifically on establishment of successful infection in the urinary niche is explored.
Abstract: Pseudomonas aeruginosa can cause complicated urinary tract infections, particularly in people with catheters, which can lead to pyelonephritis. Whilst some subgroups appear more susceptible to infection, such as the elderly and women, the contribution of other host factors and bacterial virulence factors to successful infection remains relatively understudied. In this review, we explore the potential role of P. aeruginosa virulence factors including phenazines, quorum sensing, biofilm formation and siderophores along with host factors such as Tamm-Horsfall protein, osmotic stress and iron specifically on establishment of successful infection in the urinary niche. P. aeruginosa urinary tract infections are highly antibiotic resistant and require costly and intensive treatment. By understanding the infection dynamics of this organism within this specific niche, we may be able to identify novel therapeutic strategies to enhance the use of existing antibiotics.

106 citations


Journal ArticleDOI
TL;DR: The contribution made by exopolysaccharides to biofilm formation is outlined, and the current understanding of biofilm regulation in P. aeruginosa is described with a particular focus on CF airway-associated infections.
Abstract: The Gram-negative pathogen Pseudomonas aeruginosa is found ubiquitously within the environment and is recognised as an opportunistic human pathogen that commonly infects burn wounds and immunocompromised individuals, or patients suffering from the autosomal recessive disorder cystic fibrosis (CF). During chronic infection, P. aeruginosa is thought to form structured aggregates known as biofilms characterised by a self-produced matrix which encases the bacteria, protecting them from antimicrobial attack and the host immune response. In many cases, antibiotics are ineffective at eradicating P. aeruginosa from chronically infected CF airways. Cyclic-di-GMP has been identified as a key regulator of biofilm formation; however, the way in which its effector proteins elicit a change in biofilm formation remains unclear. Identifying regulators of biofilm formation is a key theme of current research and understanding the factors that activate biofilm formation may help to expose potential new drug targets that slow the onset of chronic infection. This minireview outlines the contribution made by exopolysaccharides to biofilm formation, and describes the current understanding of biofilm regulation in P. aeruginosa with a particular focus on CF airway-associated infections.

106 citations


Journal ArticleDOI
TL;DR: The variety of approaches adopted for mining environmental DNA and, based on a systematic literature review, a comprehensive list of 332 industrially relevant enzymes discovered from metagenomes within the last three years are provided.
Abstract: In the transition to the post-petroleum economy, there is a growing demand for novel enzymes with high process performances to replace traditional chemistry with a more 'green' approach. To date, microorganisms encompass the richest source of industrial biocatalysts, but the Earth-living microbiota remains largely untapped by using traditional isolation and cultivation methods. Metagenomics, which is culture independent, represents a powerful tool for discovering novel enzymes from unculturable microorganisms. Herein, we summarize the variety of approaches adopted for mining environmental DNA and, based on a systematic literature review, we provide a comprehensive list of 332 industrially relevant enzymes discovered from metagenomes within the last three years.

98 citations


Journal ArticleDOI
TL;DR: This work discusses how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung, and focuses on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation.
Abstract: Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.

92 citations


Journal ArticleDOI
TL;DR: New treatments that target the primary defect in cystic fibrosis, recently licensed for use, have been associated with a fall in P. aeruginosa infection prevalence, which could enable more successful eradication before chronic infection is established.
Abstract: Pseudomonas aeruginosa opportunistically infects the airways of patients with cystic fibrosis and causes significant morbidity and mortality. Initial infection can often be eradicated though requires prompt detection and adequate treatment. Intermittent and then chronic infection occurs in the majority of patients. Better detection of P. aeruginosa infection using biomarkers may enable more successful eradication before chronic infection is established. In chronic infection P. aeruginosa adapts to avoid immune clearance and resist antibiotics via efflux pumps, β-lactamase expression, reduced porins and switching to a biofilm lifestyle. The optimal treatment strategies for P. aeruginosa infection are still being established, and new antibiotic formulations such as liposomal amikacin, fosfomycin in combination with tobramycin and inhaled levofloxacin are being explored. Novel agents such as the alginate oligosaccharide OligoG, cysteamine, bacteriophage, nitric oxide, garlic oil and gallium may be useful as anti-pseudomonal strategies, and immunotherapy to prevent infection may have a role in the future. New treatments that target the primary defect in cystic fibrosis, recently licensed for use, have been associated with a fall in P. aeruginosa infection prevalence. Understanding the mechanisms for this could add further strategies for treating P. aeruginosa in future.

92 citations


Journal ArticleDOI
TL;DR: It is suggested that substrate complexity affects how bacteria interact and that bacterial interactions in a community are dynamic as nutrient conditions change.
Abstract: Bacterial competition for resources is common in nature but positive interactions among bacteria are also evident. We speculate that the structural complexity of substrate might play a role in mediating bacterial interactions. We tested the hypothesis that the frequency of antagonistic interactions among lignocellulolytic bacteria is reduced when complex polysaccharide is the main carbon source compared to when a simple sugar such as glucose is available. Results using all possible pairwise interactions among 35 bacteria isolated from salt marsh detritus showed that the frequency of antagonistic interactions was significantly lower on carboxymethyl cellulose (CMC)-xylan medium (7.8%) than on glucose medium (15.5%). The two interaction networks were also different in their structures. Although 75 antagonistic interactions occurred on both media, there were 115 that occurred only on glucose and 20 only on CMC-xylan, indicating that some antagonistic interactions were substrate specific. We also found that the frequency of antagonism differed among phylogenetic groups. Gammaproteobacteria and Bacillus sp. were the most antagonistic and they tended to antagonize Bacteroidetes and Actinobacteria, the most susceptible groups. Results from the study suggest that substrate complexity affects how bacteria interact and that bacterial interactions in a community are dynamic as nutrient conditions change.

88 citations


Journal ArticleDOI
TL;DR: This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers and evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm.
Abstract: Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm-2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation.

85 citations


Journal ArticleDOI
TL;DR: There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change.
Abstract: There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change.

77 citations


Journal ArticleDOI
TL;DR: Strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation.
Abstract: Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future.

74 citations


Journal ArticleDOI
TL;DR: It is demonstrated that salinity-adapted, ACD-producing bacteria isolated from halophytes could promote sugar beet growth under saline stress conditions.
Abstract: Utilization of rhizobacteria that have associated with plant roots in harsh environments could be a feasible strategy to deal with limits to agricultural production caused by soil salinity. Halophytes occur naturally in high-salt environments, and their roots may be associated with promising microbial candidates for promoting growth and salt tolerance in crops. This study aimed to isolate efficient halotolerant plant-growth-promoting rhizobacterial strains from halophytes and evaluate their activity and effects on sugar beet (Beta vulgaris L.) growth under salinity stress. A total of 23 isolates were initially screened for their ability to secrete 1-aminocyclopropane-1-carboxylate deaminase (ACD) as well as other plant-growth-promoting characteristics and subsequently identified by sequencing the 16S rRNA gene. Three isolates, identified as Micrococcus yunnanensis, Planococcus rifietoensis and Variovorax paradoxus, enhanced salt stress tolerance remarkably in sugar beet, resulting in greater seed germination and plant biomass, higher photosynthetic capacity and lower stress-induced ethylene production at different NaCl concentrations (50-125 mM). These results demonstrate that salinity-adapted, ACD-producing bacteria isolated from halophytes could promote sugar beet growth under saline stress conditions.

Journal ArticleDOI
TL;DR: This review frames the current understanding of carboxysomes in the context of their component protein domains with their inherent function as the 'building blocks' of car boxysomes, providing the foundation for 'plug-and-play' engineering of carBoxysomes as CO2 fixation modules in a variety of biotechnological applications.
Abstract: The carboxysome is a bacterial microcompartment encapsulating the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. As the site of CO2 fixation, it serves an essential role in the carbon dioxide concentrating mechanism of many chemoautotrophs and all cyanobacteria. Carboxysomes and other bacterial microcompartments self-assemble through specific protein-protein interactions that are typically mediated by conserved protein domains. In this review, we frame our current understanding of carboxysomes in the context of their component protein domains with their inherent function as the 'building blocks' of carboxysomes. These building blocks are organized in genetic modules (conserved chromosomal loci) that encode for carboxysomes and ancillary proteins essential for the integration of the organelle with the rest of cellular metabolism. This conceptual framework provides the foundation for 'plug-and-play' engineering of carboxysomes as CO2 fixation modules in a variety of biotechnological applications.

Journal ArticleDOI
TL;DR: It is shown that choice of soil microbiome transfer method dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region.
Abstract: We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success.

Journal ArticleDOI
TL;DR: Akkermansia muciniphila, belonging to mucin-degrading species, became a dominant species in Verrucomicrobia phylum after treatment with fructo-oligosaccharides and inulin and played an important role on maintaining balance between mucin and short chain fatty acids.
Abstract: The study aimed to analyze the global influences of dietary inulin with different degrees of polymerization (DP) on intestinal microbial communities. Six-week-old male C57BL/6J mice were treated with fructo-oligosaccharides and inulin for 6 weeks. Fecal samples were obtained at time point 0 and 6th week. 16S rRNA sequence analysis was used to measure intestinal microbiota performed on the Illumina MiSeq platform. Influences of dietary inulin on intestinal microbiota were more complex effects than bifidogenic effects, relative abundance of butyrate-producing bacteria increased after interventions. Akkermansia muciniphila, belonging to mucin-degrading species, became a dominant species in Verrucomicrobia phylum after treatment with fructo-oligosaccharides and inulin. Modulation effects of intestinal microbiota were positively correlated with DP. Lower DP interventions exhibited better effects than higher DP treatment on stimulation of probiotics. We hypothesized that Akkermansia muciniphila played an important role on maintaining balance between mucin and short chain fatty acids.

Journal ArticleDOI
TL;DR: The potential changes in the benthic deep-sea microbiology expected in the coming decades are explored using case studies on specific systems used as test models to better forecast the potential consequences at global scale.
Abstract: Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.

Journal ArticleDOI
TL;DR: Climate change is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc.
Abstract: Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation.

Journal ArticleDOI
TL;DR: The morphological and genetic characteristics of Synechococcus strains and their distribution in freshwater lakes are summarized, also considering its marine counterpart.
Abstract: Cyanobacteria are among the oldest photoautotrophic organisms on Earth, and have contributed to shaping the planet's biogeochemistry with their significant biomass and key metabolic activities. Synechococcus, the focus of this review, is one of the prevalent genera in the order Chroococcales, common in oceans and lakes and characterized by a coccoid unicellular or microcolony morphology. The evolution of its phycobilisomes is the key of the adaptation of this tiny photosynthetic cell to different light regimes and environmental conditions. Furthermore, Synechococcus strains are widely distributed from the equator to the poles, showing an extreme adaptability to high and low temperatures. Because of their structural plasticity and ecological adaptability, these cyanobacteria are particularly interesting in the current condition of fast climate change. Moreover, picocyanobacteria of the Synechococcus genus have a potentially vast impact on global cycles thanks to their significant role in the biogeochemical cycles of aquatic ecosystems. As increasing abundances are predicted for this genus worldwide, and in light of the connection between cyanobacteria and global change events, a better characterization of these organisms promises important and timely ecological insights. Here, I will summarize the morphological and genetic characteristics of Synechococcus strains and their distribution in freshwater lakes, also considering its marine counterpart.

Journal ArticleDOI
TL;DR: This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems towardCO2-derived chemical production, as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct.
Abstract: Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct.

Journal ArticleDOI
TL;DR: It is reported that Mig1 is dephosphorylated by Glc7-Reg1 in an apparently glucose-dependent mechanism but also by a mechanism independent of glucose and Glc8Reg1, which appears to be controlled in a complex manner in line with the importance for rapid and sensitive regulation upon altered glucose concentrations in the growth medium.
Abstract: A yeast Saccharomyces cerevisiae Snf1 kinase, an analog of mammalian AMPK, regulates glucose derepression of genes required for utilization of alternative carbon sources through the transcriptional repressor Mig1. It has been suggested that the Glc7-Reg1 phosphatase dephosphorylates Mig1. Here we report that Mig1 is dephosphorylated by Glc7-Reg1 in an apparently glucose-dependent mechanism but also by a mechanism independent of glucose and Glc7-Reg1. In addition to serine/threonine phosphatases another process including tyrosine phosphorylation seems crucial for Mig1 regulation. Taken together, Mig1 dephosphorylation appears to be controlled in a complex manner, in line with the importance for rapid and sensitive regulation upon altered glucose concentrations in the growth medium.

Journal ArticleDOI
TL;DR: Isolated novel strains of P. aeruginosa and B. stratosphericus showed broad spectrum of antagonistic activity against five bacterial phytopathogens, with the potential to control plant diseases.
Abstract: Phytopathogenic bacteria have caused significant damage to agricultural crops in both controlled and open cultivation practices, imposing heavy losses to farmers. Thereby, the goal of this study was to evaluate Pseudomonas aeruginosa and Bacillus stratosphericus isolated from soil has antagonistic activity against bacterial phytopathogens with the potential to control plant diseases. Isolated novel strains of P. aeruginosa and B. stratosphericus showed broad spectrum of antagonistic activity against five bacterial phytopathogens. Antagonistic activity was examined under optimized pH (8 and 7), carbon sources (lactose and starch), nitrogen sources (ammonium chloride, peptone and ammonium nitrate) for P. aeruginosa and B. stratosphericus, respectively, and biocatalyst production (chitinase, protease and amylase) was studied. Additionally, up-regulation of defense-related genes (PR-1a and PAL) was studied in tomato plants treated with P. aeruginosa and B. stratosphericus. The induction of defense-related genes in tomato plant was triggered after 12 h treatment with a cell concentration of 0.20 O.D. for P. aeruginosa and 0.21 O.D. for B. stratosphericus during treatment period. Broad spectrum antagonistic activity was observed due to antibiotic and siderophore production by P. aeruginosa and B. stratosphericus.

Journal ArticleDOI
TL;DR: Super‐spreading and super‐shedding by cattle are described and the main factors that shape these transmission heterogeneities are reviewed, which represent key components that are critical for targeted infection control initiatives.
Abstract: Several early models describing host-pathogen interaction have assumed that each individual host has approximately the same likelihood of becoming infected or of infecting others. More recently, a concept that has been increasingly emphasized in many studies is that for many infectious diseases, transmission is not homogeneous but highly skewed at the level of populations. In what became known as the '20/80 rule', about 20% of the hosts in a population were found to contribute to about 80% of the transmission potential. These heterogeneities have been described for the interaction between many microorganisms and their human or animal hosts. Several epidemiological studies have reported transmission heterogeneities for Escherichia coli by cattle, a phenomenon with far-reaching agricultural, medical and public health implications. Focusing on E. coli as a case study, this paper will describe super-spreading and super-shedding by cattle, review the main factors that shape these transmission heterogeneities and examine the interface with human health. Escherichia coli super-shedding and super-spreading by cattle are shaped by microorganism-specific, cattle-specific and environmental factors. Understanding the factors that shape heterogeneities in E. coli dispersion by cattle and the implications for human health represent key components that are critical for targeted infection control initiatives.

Journal ArticleDOI
TL;DR: It is suggested that urine harbours more diverse bacterial communities than saliva and faeces and reveal potentially zoonotic bacteria such as Leptospira, Rickettsia, Bartonella and Coxiella in all body habitats.
Abstract: This work was supported by the National Research Foundation (NRF) of South Africa [Grant UID 78566 (NRF RISP grant for the ABI3500), UID 91496 and UID 92524], and by the Grant or Cooperative Agreement Number, [1U2GGH001874-01], funded by the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Preventionor the Department of Health and Human Services. MD’s postdoctoral fellowship is funded by a Capacity Building Grant from the National Research Foundation, South Africa [Grant UID 92524].

Journal ArticleDOI
TL;DR: Both long‐term survival and biofilm formation were inhibited by vitamin C, suggesting that vitamin C has the potential to be developed as the inhibitor of (p)ppGpp synthesis and stress response, at least in the concentration range used here.
Abstract: Earlier, vitamin C was demonstrated to sterilize Mycobacterium tuberculosis culture via Fenton's reaction at high concentration. It alters the regulatory pathways associated with stress response and dormancy. Since (p)ppGpp is considered to be the master regulator of stress response and is responsible for bacterial survival under stress, we tested the effect of vitamin C on the formation of (p)ppGpp. In vivo estimation of (p)ppGpp showed a decrease in (p)ppGpp levels in vitamin C-treated M. smegmatis cells in comparison to the untreated cells. Furthermore, in vitro (p)ppGpp synthesis using RelMSM enzyme was conducted in order to confirm the specificity of the inhibition in the presence of variable concentrations of vitamin C. We observed that vitamin C at high concentration can inhibit the synthesis of (p)ppGpp. We illustrated binding of vitamin C to RelMSM by isothermal titration calorimetry. Enzyme kinetics was followed where K0.5 was found to be increased with the concomitant reduction of Vmax value suggesting mixed inhibition. Both long-term survival and biofilm formation were inhibited by vitamin C. The experiments suggest that vitamin C has the potential to be developed as the inhibitor of (p)ppGpp synthesis and stress response, at least in the concentration range used here.

Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to trim redundancy from the extracellular electron transfer pathways in G. sulfurreducens in order to construct strains with defined extrace cellular electron transfer routes.
Abstract: The highly redundant pathways for extracellular electron transfer in Geobacter sulfurreducens must be simplified for this microorganism to serve as an effective chassis for applications such as the development of sensors and biocomputing. Five homologs of the periplasmic c-type cytochromes, PpcA-E, offer the possibility of multiple routes of electron transfer across the periplasm. The presence of a large number of outer membrane c-type cytochromes allows G. sulfurreducens to adapt to disruption of an electron transfer pathway in the outer membrane. A strain in which genes for all five periplasmic cytochromes, PpcA-E, were deleted did not reduce Fe(III). Introducing ppcA under the control of an IPTG-inducible system in the quintuple deletion strain yielded a strain that reduced Fe(III) only in the presence of IPTG. A strain lacking known major outer membrane cytochromes, OmcB, OmcE, OmcS and OmcT, and putative functional homologs of OmcB, did not reduce Fe(III). Introduction of omcB in this septuple deletion strain restored the ability to reduce Fe(III). These results demonstrate that it is possible to trim redundancy from the extracellular electron transfer pathways in G. sulfurreducens in order to construct strains with defined extracellular electron transfer routes.

Journal ArticleDOI
TL;DR: Nearpod and similar products represent a new class of feature‐rich audience response systems that have potential to transform learning even in large classes.
Abstract: Active and collaborative learning provides distinct advantages for students in higher education, yet can often be hampered by the barrier of large class sizes. Solutions that combine a 'bring your own device culture' with cloud-based technologies may facilitate a more interactive learning experience. In this pilot study, we describe the use of one such technology, Nearpod, to enhance interactivity in lectures delivered to pharmacy and bioscience students at Ulster University. Existing material in PowerPoint or Keynote format is uploaded to the instructor area of Nearpod, interactive elements are added, and the lecture is then broadcasted via the internet to student devices. The lecturer may choose to share polling responses or examples of submissions from the drawing tool or open-ended questions, thereby providing instant feedback on learning. Students commented favourably on the interactivity and engagement afforded by Nearpod. Most students were happy to use their own electronic devices (smartphones, tablets and laptops) for such activities with a minority expressing concern over problems with connecting to the institutional Wi-Fi. Nearpod and similar products represent a new class of feature-rich audience response systems that have potential to transform learning even in large classes.

Journal ArticleDOI
TL;DR: Results from 16S rRNA amplicon sequencing demonstrate that the choice of a DNA extraction method significantly influences the bacterial community profiles generated, demonstrating the potential bias in metagenomic diversity estimates associated with different DNA extraction methods.
Abstract: High-throughput DNA sequencing technologies are increasingly used for the metagenomic characterization of microbial biodiversity. However, basic issues, such as the choice of an appropriate DNA extraction method, are still not resolved for non-model microbial communities. This study evaluates four commonly used DNA extraction methods for marine periphyton biofilms in terms of DNA yield, efficiency, purity, integrity and resulting 16S rRNA bacterial diversity. Among the tested methods, the Plant DNAzol® Reagent (PlantDNAzol) and the Fast DNATM SPIN Kit for Soil (FastDNA Soil) methods were best suited to extract high quantities of DNA (77 - 130 μg g wet wt-1). Lower amounts of DNA were obtained (< 37 μg g wet wt-1) with the Power Plant® Pro DNA Isolation Kit (PowerPlant) and the Power Biofilm® DNA Isolation Kit (PowerBiofilm) methods, but integrity and purity of the extracted DNA were higher. Results from 16S rRNA amplicon sequencing demonstrate that the choice of a DNA extraction method significantly influences the bacterial community profiles generated. A higher number of bacterial OTUs were detected when DNA was extracted with the PowerBiofilm and the PlantDNAzol methods. Overall, this study demonstrates the potential bias in metagenomic diversity estimates associated with different DNA extraction methods.

Journal ArticleDOI
TL;DR: A scheme for a fatty acid desaturation pathway that describes the biosynthesis of 16:1&Dgr;7 and 16:2&DGr;7,10 fatty acids in Desertifilum is proposed.
Abstract: A cyanobacterial strain from Lake Shar-Nuur, a freshwater lake in Mongolia, was isolated and characterized by a polyphasic approach. According to the 16S ribosomal RNA gene sequence, this strain (IPPAS B-1220) belongs to a newly described genus Desertifilum. In general, strains of Desertifilum maintain their genetic stability, as seen from the analysis of the 16S rRNA gene and 16S-23S rRNA internal transcribed spacer sequences from strains collected at distant locations. The newly discovered strain is characterized by an unusual fatty acid composition (16:1Δ7 and 16:2Δ7,10). Analysis of its draft genomic sequence reveals the presence of six genes for the acyl-lipid desaturases: two Δ9-desaturases, desC1 and desC2; two Δ12-desaturases, desA1 and desA2; one desaturase of unknown specificity, desX; and one gene for the bacillary-type desaturase, desG, which supposedly encodes an ω9-desaturase. A scheme for a fatty acid desaturation pathway that describes the biosynthesis of 16:1Δ7 and 16:2Δ7,10 fatty acids in Desertifilum is proposed.

Journal ArticleDOI
TL;DR: Information is provided about pathogenicity and antimicrobial resistance, which is essential to design efficient strategies to control mastitis caused by coagulase‐negative staphylococci, to identify CNS species involved in mastitis.
Abstract: Mastitis affects the health and welfare of dairy cows worldwide. Coagulase-negative staphylococci (CNS) are known to form biofilms and are increasingly recognized as a cause of persistent bovine intramammary infections. A total of 90 CNS isolated from cows with clinical and subclinical mastitis in Argentina from 2008 to 2014 were identified by PCR-RFLP using the gap gene. Standard microtiter plate assays were used to assess CNS biofilm formation, and Staphylococcus haemolyticus species formed the strongest biofilms. The presence of biofilm-associated genes icaA, bap and aap was detected in a few isolates, while embP, fbe, atlE and eno were present in the majority of isolates. Genes encoding resistance to β-lactams were detected among the isolates; blaZ, mecA and mecC were detected in 21, 4 and 1 isolate, respectively. Resistance to macrolides and lincosamides (n = 6) was attributable to ermB, ermC, mphC or mrsA or a combination of those genes. In this study, we identified CNS species involved in mastitis and provide information about pathogenicity and antimicrobial resistance, which is essential to design efficient strategies to control mastitis caused by CNS.

Journal ArticleDOI
TL;DR: This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics.
Abstract: Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research.

Journal ArticleDOI
TL;DR: An overview on the microbial sterol catabolism is described with a focus on the catabolic step of the 3β-hydroxy-5-en structure, which is found in a large number of microorganisms, especially in Actinobacteria as species of Rhodococcus and Streptomyces.
Abstract: An overview on the microbial sterol catabolism is described with a focus on the catabolic step of the 3β-hydroxy-5-en structure. Cholesterol oxidase transforms this structure into the corresponding 3-keto-4-en feature, and thus initiates the sterol molecule catabolism. The oxidase has been found in a large number of microorganisms, especially in Actinobacteria as species of Rhodococcus and Streptomyces. Other Actinobacteria as species of Mycobacterium and Nocardia possess NAD(P)-dependent dehydrogenase for this catabolic step. In Rhodococcus jostii, oxidation of the C26 of the sterol side chain is the initiating step. The resulting stenone or sterol-C26-oic acid is then catabolized according to two subpathways: cleavage of the sterol side chain and degradation of the steroid nucleus. Divergent items concerned with the enzymes that transform the sterol 3β-hydroxy-5-en are discussed.