scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Microwave and Wireless Technologies in 2019"


Journal ArticleDOI
TL;DR: The paper has carried out meticulous study over the impact of 5G antennas on the size of antenna, size/type of substrate, gain, efficiency, and isolation, etc, and includes the existing technology i.e 4G LTE and their isolation enhancement approaches.
Abstract: Fifth generation (5G) is the current hot topic of the world's leading telecommunication companies. The compact designs of antennas made it possible for them to resonate at higher frequencies, thus to enable the devices to attain higher data rate as compared to 4G technology. Data rate of 5G technology for low mobility users is expected to be 50.0 Gbps and for high mobility users it is 5.0 Gbps. On the other hand, International telecommunication union's objective for 5G is 3 times more spectrally efficient thanlong-term evolution (LTE). The paper has carried out meticulous study over the impact of 5G antennas on the size of antenna, size/type of substrate, gain, efficiency, and isolation, etc. Also, different arrays andmultiple input multiple outputs (MIMOs) with patch antenna, magneto electric-dipole, microstrip grid array antenna, folded dipole, series-fed array, connected antenna array, MIMO are studied. The paper also includes the existing technology i.e 4G LTE and their isolation enhancement approaches. Many of the designs used the reflector plates to reduce the back lobe radiation problem in MIMO/array antennas to increase front-to-back ratio. The gain in 5G antennas can be increased by using balun, parasitic element as directors, multiple notch structures, three identical slot sub-arrays, etc. Mathematical equations of multi-element/port antennas are included to model the designed antennas. The beam steering is also included for the 5G technology in this paper.

28 citations


Journal ArticleDOI
TL;DR: To check the suitability of antenna for indoor and outdoor environments the mean effective gain and specific absorption rate results are presented in the paper and it found under the required safety norms as per the international telecommunication union for uniform and Gaussian environments.
Abstract: A four-port shared radiator is proposed for 5.2 GHz wireless application using multiple-cut rectangular geometry and partially stepped ground. The difficulty in making the shared radiator structure is almost removed in the presented design, and without the help of any isolating structure, sufficient value of isolation is achieved. The proposed shared geometry produces isolation of >10 dB in the 4.96–5.5 GHz operating frequency band. The gain of the MIMO antenna varies from 2.4 to 5.5 dBi, and radiation efficiency is >63% in the proposed band. The ports are arranged in an orthogonal manner to reduce the mutual coupling. An envelope correlation coefficient is <0.03 in the proposed antenna band. The total active reflection coefficient bandwidth of the antenna is 500 MHz with best combination of input excitation angles of 90, 180°. The isolation in the proposed shared radiator is enhanced by creating multiple cuts and stepped ground. To check the suitability of antenna for indoor and outdoor environments the mean effective gain and specific absorption rate results are also presented in the paper and it found under the required safety norms as per the international telecommunication union for uniform and Gaussian environments.

25 citations


Journal ArticleDOI
TL;DR: In this article, a concise review of recent research and development in the context of electromagnetic absorbers is provided, focusing on the challenges encountered while designing a perfect electromagnetic absorber which can absorb electromagnetic radiations of any polarization that may appear from any direction and may occur over a broader bandwidth.
Abstract: This paper specifies a concise review of recent research and development in the context of electromagnetic absorbers. An attempt has been made to justify the need for economical and thin microwave absorbers for achieving good absorption characteristics over a wide range of frequencies within a specified band of electromagnetic spectrum. This paper mainly focuses on the challenges encountered while designing a perfect electromagnetic absorber which can absorb electromagnetic radiations of any polarization that may appear from any direction and may occur over a broader bandwidth. The absorbers which are competent enough to withstand all these challenges are capable to suppress the reflection and transmission of unknown electromagnetic radiations efficiently to the lowest possible level. Several prospects of nanotechnology in flexible absorber design are also described to enhance absorber characteristics. This paper also provides a futuristic glimpse on several applications of such absorbers for commercial and military purposes.

25 citations


Journal ArticleDOI
TL;DR: In this article, the scattering of the H-polarized plane electromagnetic wave by a finite multilayer graphene strip grating is considered and the properties of the whole structure are obtained from the set of integral equations, which are written in the operator form.
Abstract: Abstract The scattering of the H-polarized plane electromagnetic wave by a finite multilayer graphene strip grating is considered. The properties of the whole structure are obtained from the set of integral equations, which are written in the operator form. The scattering operators of a single layer are used and supposed to be known. Scattering and absorption characteristics as well as diffraction patterns are presented.

24 citations


Journal ArticleDOI
TL;DR: In this paper, a multiple input multiple output (MIMO) antenna with two sets of four elements antenna array (2 × 2) on the top and a novel metamaterial structure on the ground plane is proposed.
Abstract: In this paper, a multiple input multiple output antenna which operates at 5.8 GHz for wireless local area network applications is proposed. The proposed antenna is composed of two sets of four elements antenna array (2 × 2) on the top and a novel metamaterial structure on the ground plane. Here, the ground plane, which includes a lattice of 2 × 5 unit cells of metamaterial structure, is utilized in order to improve parameters of the antenna. Thanks to the proposed metamaterial structure, not only gain and bandwidth of antenna are enhanced, but also mutual coupling is reduced. The final design, with an overall size of 137 × 77 × 3.048 mm3, resulted in a |S11| <−10 dB bandwidth of 1.78 GHz and a peak gain of 9.2 dBi. In addition, the isolation is higher than 18 dB although the close separation from edge to edge of the two antennas is only 2 mm and radiation efficiency of 73% at the operating frequency band. All is simulated based on CST Studio software and the simulated S-parameter results of the antenna are in good agreement with measurement results.

20 citations


Journal ArticleDOI
TL;DR: In this article, a flexible CPW fed ultrawide band (UWB) antenna with mu-negative (MNG) metamaterial is designed, fabricated, and tested for wearable applications.
Abstract: In this paper, a flexible CPW fed ultrawide band (UWB) antenna with mu-negative (MNG) metamaterial is designed, fabricated, and tested for wearable applications. Initially, a UWB antenna of size 50 mm × 43 mm is fabricated on two different substrates, viz. flexible FR4 and semi-flexible Rogers RT/duroid 5880. A metamaterial structure fabricated on flexible FR4 shows a magnetic resonance from 7.2 GHz to 9.2 GHz with maximum stop band attenuation (−49 dB) and high MNG value (−2121.6) at 7.87 GHz. Then a (3 × 3) array of designed MNG metasurface is used as ground plane with flexible UWB antenna, which improves its overall gain and radiation pattern. The performance of the flexible antenna with/without metamaterial at various distances from flat and cylindrical three-layered human phantom of skin, fat, and muscle is studied. Further, the bending characteristics at different angles and performance over thin metallic sheet is also evaluated. Additionally, the peak specific absorption rate value averaged over 1 g of tissue at three chosen frequencies from UWB range (3, 5, 10 GHz) with/without metamaterial using 0.3 and 0.1 W of input power is also analyzed. The simulated and measured results are in good agreement which confirms that the designed antenna is a good candidate for wearable applications.

20 citations


Journal ArticleDOI
TL;DR: In this article, a coplanar waveguide (CPW)-fed rectangular patch antenna with a square-shaped ground plane is proposed for modern advanced navigation systems, where a wide slot is introduced in the square ground plane and the rectangular patch is shifted toward the left edge of the ground surface.
Abstract: The paper presents a new coplanar waveguide (CPW)-fed rectangular patch antenna with a square-shaped ground plane that can be employed in modern advanced navigation systems. For realizing broad impedance bandwidth in the proposed antenna, a wide slot is introduced in the square ground plane and the rectangular patch is shifted toward the left edge of the ground surface. In addition, by means of introducing square-shaped stubs near the left and right edge of the ground plane, the circular polarization is achieved at L1, L2, and L5 satellite bands. As per the simulation results, the proposed antenna provides a wide impedance bandwidth (S11<−10 dB) of 123% (1.12–4.72 GHz) and 3 dB axial ratio bandwidth of 11% (1.15–1.29 GHz) and 18% (1.5–1.8 GHz) suitable for multipurpose wireless applications. The designed single feed circularly polarized antenna is low profile, small size, light weight and easily integrable with other high-frequency communication devices. To validate radiation performance of the proposed structure, the antenna is fabricated and integrated with the commercially available Global Positioning System (GPS) receiver and it is found that the measured values are in close agreement with the desired results.

17 citations


Journal ArticleDOI
TL;DR: In this article, a four-element wide-band octagonal ring-shaped antenna is proposed for human interface device and S-band applications, where the isolation structure comprises a parasitic element and a T-shaped structure.
Abstract: A four-element wide-band octagonal ring-shaped antenna is proposed for human interface device and S-band applications. The isolation structure comprises a parasitic element and a T-shaped structure. The antenna has −10 dB impedance bandwidth 63% (2.1–4.0 GHz) with miniaturized dimension of 54.98 mm × 76 mm. The multiple input multiple output (MIMO) antenna gain is 2.83 dBi at the 2.4 GHz resonant frequency. The designed MIMO has envelop correlation coefficient of 0.026 in the 2:1 VSWR band. The −10 dB total active reflection coefficient bandwidth of 1.2 GHz has been achieved in the entire frequency band, and has MEG value of ≤−3 dB. The specific absorption rate has found below the safety limit near the human head, palm and wrist.

17 citations


Journal ArticleDOI
TL;DR: In this paper, a compact low-pass filter with wide rejection band based on T-type circuit of an enhanced dual composite right/left-handed (D-CRLH) resonator is presented.
Abstract: A compact low-pass filter (LPF) with wide rejection band based on T-type circuit of an enhanced dual composite right-/left-handed (D-CRLH) resonator is presented in this paper. The resonator has only one cell with series and parallel tank circuit. The parallel LC tank circuit has been realized by an interdigital capacitor and one shorted finger, whereas its series LC tank circuit is realized by an air gap capacitance and a short circuit stub. The filter has wide rejection band bandwidth with three transmission zeros (TZs). The filter bandwidth and TZs frequencies are controlled by the D-CRLH element values. The results of the proposed filter demonstrate minimum insertion loss in passband, high roll-off rate, and good figure of merit. The measured results are in good agreement with the simulated results. The detailed filter design is discussed in terms of circuit modeling, dispersion analysis, and full-wave simulation. Finally, the filter size is compact (0.10 λg × 0.15 λg) at cut-off frequency.

14 citations


Journal ArticleDOI
TL;DR: In this article, a simple design for triple-band circularly polarized (CP) wide slot antennas is proposed and experimentally investigated, which has a microstrip-fed rectangular patch with T-shaped notch for tripleband operation and a modified wide square slot on ground plane for CP operation.
Abstract: A simple design for triple-band circularly polarized (CP) wide slot antennas is proposed and experimentally investigated. The proposed antenna having a microstrip-fed rectangular patch with T-shaped notch for triple-band operation and a modified wide square slot on ground plane for CP operation. The measured 10 dB reflection bandwidths are 1.24% (≈340 MHz from 2.56 to 2.9 GHz), 9.63% (≈430 MHz from 4.25 to 4.68 GHz), and 5.34% (≈490 MHz from 8.93 to 9.42 GHz). The generated 3 dB axial ratio bandwidths of the proposed antenna are 7.54, 8.98, and 1.65% at operating frequencies around 2.65, 4.45, and 9.09 GHz, respectively. The measured peak gains within the 3 dB axial ratio bands are 3.03, 3.5, and 5.64 dBi. The simulated and measured results for the return loss, axial ratio, and antenna gain show a good agreement, which validate the antenna design.

13 citations


Journal ArticleDOI
TL;DR: In this article, a planar ultra-wideband (UWB) antenna with WiMAX and WLAN notched band is presented, which consists of a rectangular patch and slotted partial ground plane and fed by a microstrip feed line.
Abstract: A compact planar ultra-wideband (UWB) antenna with WiMAX and WLAN notched band is presented in this paper. The presented antenna consists of a rectangular patch and slotted partial ground plane and fed by a microstrip feed line. The volumetric size of the antenna is 30 mm × 22 mm × 1.6 mm. Method of moment-based simulation technology is used to simulate and analyze the characteristics of the antenna. To generate two notch bands at WiMAX and WLAN, a pair of parasitic resonator is placed beneath the radiating patch. The presented antenna achieves an operating band (VSWR ≤2) ranging from 2.98 to 12 GHz with an average gain of 3.95 dBi along with considerable efficiency and symmetric radiation patterns. Moreover, the antenna exhibits two notch bands at 3.5 and 5.45 GHz and is able to avoid possible interference with pre-existing narrow band services. The proposed antenna is low cost and low profile and is modeled to be used as a transceiver in UWB communication applications.

Journal ArticleDOI
TL;DR: In this article, a compact reconfigurable filtering ultra-wideband (UWB) antenna with switchable band-notched functions is proposed, which is a filtering slot antenna with good band-edge selectivity using stepped impedance resonator feeding line.
Abstract: A compact reconfigurable filtering ultra-wideband (UWB) antenna with switchable band-notched functions is proposed. The basic structure of the proposed design is a filtering slot antenna with good band-edge selectivity using stepped impedance resonator feeding line. The reconfigurability is achieved by using two microstrip lines paralleling to the feeding line and two PIN diodes. The reconfigurable structure and bias circuit of the antenna are relatively simple and are not connected to the radiation structure, so they have little negative influence on the radiation characteristics of the antenna. Total four states could be achieved by using two PIN diodes to short the microstrip lines and ground. To verify the performance of the final design, multiple measured and simulated results in frequency and time domain are studied and analyzed. The measured results agreed very well with simulation. Compared with the traditional UWB antenna, the proposed antenna has advantages in size, filtering function in-band and out-of-band, and tunable states for multiple UWB applications.

Journal ArticleDOI
TL;DR: A novel, efficient algorithm, called Range Filter Bank, is proposed to implement a scope-tailored computation of range/Doppler data in continuous emission noise radar.
Abstract: In noise radar, digital signal processing algorithms for implementing the computation of the Cross Ambiguity Function through range correlation and Doppler compensation call for optimized solutions. In fact, to achieve a high coherent processing gain, they often compute a large amount of data beyond the maximum range and/or the maximum radial velocity of interest, adding useless information. A novel, efficient algorithm, called Range Filter Bank, is proposed to implement a scope-tailored computation of range/Doppler data in continuous emission noise radar. Downstream its theoretical analysis, the algorithm has been applied to a real-life case study based on dedicated field experiments, in which good quality kinematic data of a car moving at various speeds have been extracted.

Journal ArticleDOI
TL;DR: In this paper, a flexible single-fed planar circular polarized slot antenna is proposed for Internet of Things wideband applications, which employs a mechanically bendable liquid crystalline polymer substrate.
Abstract: In this paper, a flexible single fed planar circular polarized slot antenna is proposed for Internet of Things wideband applications. The antenna flexibility is achieved by employing a mechanically bendable liquid crystalline polymer substrate. The overall antenna volume is 50 mm × 42 mm × 0.1 mm. The antenna design uses 45° rotated elliptical ground structure for generating circular polarized radiation over wideband spectrum. Two parametrical analyses targeting the slot ground are introduced in order to achieve the most efficient design. The final antenna design demonstrates a good matching in terms of reflection coefficient (<−10 dB), semi-omnidirectional radiation patterns, average gain of 4 dB, and <3 dB axial ratio over entire frequency band of operation. All antenna parameters are studied in both straight and bent antenna setup scenarios. Good agreement between simulation and measurement results of the antenna parameters are achieved. For both straight and bent antenna scenarios, the antenna receiving functionality in time domain is confirmed by retrieving highly correlated impulse responses.

Journal ArticleDOI
TL;DR: In this article, a simple uniplanar, high gain, microstrip antenna is designed, fabricated, and tested for existing WLAN and new UNII standards, which provides dualband operation by joining two rectangular rings and cutting Defected Ground Structure in the Coplanar Wave Guide (CPW) feed.
Abstract: The spectral congestion in existing Industrial, Scientific, and Medical (ISM) Wireless Local Area Network (WLAN) bands has led to the emergence of new ISM bands (Unlicensed National Information Infrastructure (UNII)) from 5.150 to 5.710 GHz. In this paper, a simple uniplanar, high gain, microstrip antenna is designed, fabricated, and tested for existing WLAN and new UNII standards. The proposed antenna provides dualband operation by joining two rectangular rings and cutting Defected Ground Structure in the Coplanar Wave Guide (CPW) feed. The experimental and simulation results show good return loss characteristics and stable radiation pattern over the desired frequency bands ranging from 2.20 to 2.65 GHz (WLAN band) at a lower frequency and from 5.0 to 5.45 GHz (UNII-1/UNII-2 bands). The measured peak gains are 5.5 and 4.9 dBi at 2.45 GHz (WLAN band) and 5.15 GHz (UNII band), respectively.

Journal ArticleDOI
TL;DR: In this article, a printed multiband multi-input multiple-output (MIMO) antenna with two symmetric printed monopole antennas is proposed, which can be applied to traditional 2G, 3G, 4G, and 5G mobile communication.
Abstract: A printed multiband Multi-Input Multiple-Output (MIMO) antenna is proposed in this paper. This MIMO antenna system comprises two symmetric printed monopole antennas. Each antenna element consists of multiple bend lines, producing four resonant modes and covering the GSM900, PCS, LTE2300, and 5G bands. Simulated and measured results prove that the proposed MIMO antenna can be applied to traditional 2G, 3G, 4G, and present 5G mobile communication. By etching four inverted L-shaped grooves on its ground plate, mutual coupling between the adjacent antenna elements has been suppressed. This makes the |S21| at all four resonant modes is lower than −40 dB. In addition, its low coupling mechanism has been analyzed by surface current distribution. The designed multiband MIMO antenna provides an idea of reference to realize low mutual coupling between antenna elements, which is also realizable in infrared or optical regimes with appropriate designs.

Journal ArticleDOI
TL;DR: In this paper, a dualband rejection filter and a triband rejection filter are proposed, both of which are implemented by cascading spoof surface plasmon polaritons (SSPPs) of the same structure but with diverse rejection bands.
Abstract: A dualband rejection filter and a triband rejection filter are proposed in this letter, both of which are implemented by cascading spoof surface plasmon polaritons (SSPPs) of the same structure but with diverse rejection bands. Compared with traditional ones, the proposed filters provide more compact structures, wider rejection bands, and better independent tunability. In the proposed filters, the rejection bandwidth, the center frequency of the rejection band and the filter's cutoff frequency can be adjusted independently. And the different rejection bands in the same filter also can be independently controlled. Agreements between the dispersion of SSPP units and the S21 of filters are also presented. Measurement results demonstrate that both filters load multiple rejection bands on the 27.7 GHz wide low-pass band and all the rejection bands locate in Ku and K bands. The average rejection bandwidth and the average rejection depth of the two filters are 1.49 GHz and 42.1 dB, respectively.

Journal ArticleDOI
TL;DR: A functional version of a VCO and a one-channel transceiver MMIC, able to handle more broadband signals than systems presented in current literature and is furthermore not limited to one modulation scheme is presented.
Abstract: This paper presents a W-band MIMO radar transceiver chipset for automotive applications, based on a Silicon Germanium technology. It consists of a reference VCO, operating at a center frequency of 38 GHz and a companion IC that comprises a complete millimeter-wave transceiver at 76 GHz. This chipset enables building multipurpose MIMO radar systems that can be scaled in terms of transmitter and receiver count. What makes this system innovative is the fact that it is able to handle more broadband signals than systems presented in current literature and is furthermore not limited to one modulation scheme. The chipset is capable of transmitting and receiving any signal waveform. The main goal of this work was to create a functional version of a VCO and a one-channel transceiver MMIC. Furthermore a demonstrator for a proof of concept was designed to test the MMICs on a system level. The realized VCO MMIC achieves a tuning frequency range of 6 GHz with a center frequency of 38 GHz and consumes 152 mW from a 3.3 V supply. The transceiver MMIC is fully functional and achieves a saturated output power of 11.5 dBm while drawing 670 mW from a 3.3 V supply.

Journal ArticleDOI
TL;DR: In this paper, a peak signal to noise ratio based autofocusing technique has been developed by using curve fitting and the genetic algorithm, which corrects the wall's parameters like its thickness and dielectric constant.
Abstract: In through the wall imaging systems, wall parameters like its thickness and dielectric constant play an important role in the true and correct image formation of an object behind the wall made of various materials like brick cement, wood, plastic, etc. Incorrect estimation of these parameters leads to dislocation of the object and smearing or blurriness of the image too. A new autofocusing technique for a stepped frequency continuous wave -based radar at the frequency of 1–3 Ghz has been developed that corrects the wall's parameters like its thickness and dielectric constant and provides a better focused image of the target. For this purpose, a peak signal to noise ratio -based autofocusing technique has been developed by using curve fitting and the genetic algorithm. It is observed that the proposed technique has capability to focus the image up to good extent.

Journal ArticleDOI
TL;DR: In this article, an elliptical shape ultra-wide band antenna for imaging of wood was proposed, which is constructed comprising of a patch loaded by a stub to resonate at lower bands, strip loading at the back, and chamfered ground.
Abstract: This paper presents the design of an elliptical shape ultra-wide band antenna for imaging of wood. The antenna is constructed comprising an elliptical shape of patch loaded by a stub to resonate at lower bands, strip loading at the back, and chamfered ground. Despite having miniaturized dimensions of 20 mm × 20 mm, the proposed antenna shows better results compared to recent studies. The simulation results depict a good ultra-wide bandwidth from 2.68 to 16 GHz, and 18.2–20 GHz. Besides, the proposed antenna has two low-frequency bands at 0.89–0.92 and 1.52–1.62 GHz, maximum gain of 5.48 dB, and maximum directivity of 6.9 dBi. The measurement outcomes are performed in air, plywood, and high-density wood and show a good agreement with the simulated results done using electromagnetic simulator CST. In addition to that, the measurement results of S-parameters, transmitted and received signals show a good agreement with the simulated results. Besides, the measured results illustrate a good isolation and uniform illumination among arrays as well as the received signals' shapes do not change in different environments, but only the amplitude. Hence, the proposed antenna seems to be adequate for microwave imaging of wood.

Journal ArticleDOI
TL;DR: The superior results obtained, in terms of both dc voltage and power, with respect to a standard single-monopole rectenna, justify the deployment of the presented tag for the energy autonomy of future generation radio-frequency identification tags for indoor localization.
Abstract: This work describes the design of a rectenna array exploiting orthogonal, closely-spaced UHF monopoles for orientation-independent RF energy harvesting to energize a passive tag, designed for UWB localization, with wake-up radio (WUR) capabilities. To reach this goal, different RF networks are studied to simultaneously realize RF decoupling of the antenna elements and matching of the radiating elements to the non-linear network of rectifiers. The design is performed for a wide power range of the RF incoming signals that need to be exploited for both energizing the passive tag and for providing energy autonomy to a WUR sub-system, used to minimize the long-term power consumption during tag standby operations. Two meandered cross-polarized monopoles, located in close proximity, and thus highly coupled, are adopted for orientation-insensitive operations. The combining RF network is reactive and includes an unbalanced power divider to draw a fraction of the harvested energy to a secondary way for WUR operations. The performance of the harvester is first optimized by EM/non-linear co-design of the whole system over an interval of low RF power levels. The system has been realized and experimentally validated: the superior results obtained, in terms of both dc voltage and power, with respect to a standard single-monopole rectenna, justify the deployment of the presented tag for the energy autonomy of future generation radio-frequency identification tags for indoor localization.

Journal ArticleDOI
TL;DR: In this paper, a high selective dual band and miniaturized electromagnetic band gap (EBG) unit cell is presented, which can suppress interference frequencies in less than 100 MHz bandwidth without affecting the antenna performance in the whole bandwidth.
Abstract: A high selective dual band and miniaturized electromagnetic band gap (EBG) unit cell is presented in this paper. The analysis and characterization of the new cell are explained. The modified compact EBG unit cell is based on cutting two inverted U-shaped slots inside the typical mushroom-like EBG. The modified EBG has a 70% size reduction. The dual-band functionality of the structure is confirmed by applying it in a dual-notch ultra-wideband antenna (3.1–10.6 GHz), and the notch frequencies are 5.2 and 5.8 GHz. The dual-band functionality has advantages of a highly selective bandpass between them. The antenna can suppress interference frequencies in less than 100 MHz bandwidth without affecting the antenna performance in the whole bandwidth. Presented results are addressed in terms of circuit modeling, 3D full-wave simulations, and measurements.

Journal ArticleDOI
TL;DR: A novel approach for the determination of True-Speed-Over-Ground for trains is presented by correlating the received signals of two side-looking radar sensors and the theoretically achievable precision is derived.
Abstract: This paper presents a novel approach for the determination of True-Speed-Over-Ground for trains. Speed determination is accomplished by correlating the received signals of two side-looking radar sensors. The theoretically achievable precision is derived. Test measurements are done in two different scenarios to give a proof of concept. Thereafter a series of field measurements is performed to rate the practical suitability of the approach. The results of the measurements are thoroughly evaluated. The test and field measurements are carried out using a 24 GHz frequency modulated continuous wave radar.

Journal ArticleDOI
TL;DR: In this paper, a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed is presented.
Abstract: This paper presents a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed. Simulation of the impedance characteristic and radiation characteristic for the proposed antenna is carried out using commercially available HFSS software. The simulated data validate measured results and shows good agreement. Proposed antenna shows an impedance bandwidth (return loss >10 dB) of 50.88% at 5.9 GHz of center frequency and 29.92% at 12.8 GHz of center frequency for lower and upper band, respectively. The 3 dB axial ratio bandwidth for lower and upper band is 26.4 and 3.0%, respectively and measured peak gain for the lower and upper band is found as 3.2 and 3.4 dBic, respectively. The proposed antenna can be suitable for wireless communication in C and Ku bands.

Journal ArticleDOI
TL;DR: In this article, a decoupling technique for closely spaced E-plane patch antennas using defect ground structure (DGS) is proposed, where the DGS is not etched in the middle of the antennas but loaded along the outer edge of the radiated patch.
Abstract: In this paper, a novel decoupling technique for closely spaced E-plane patch antennas using defect ground structure (DGS) is proposed. The electric field coupling between the antennas is suppressed by etching DGS which consists of a pair of rectangular slots and four stubs on the ground plane. Moreover, unlike the other methods, the DGS is not etched in the middle of the antennas but loaded along the outer edge of the radiated patch. Thus, through the adopted technology the distance between the antenna elements is reduced and the isolation is increased. To validate the improvements by adopting the proposed technology, the array with DGS loading has been fabricated and then measured. The measurement results show that designed antennas have 95 MHz 10-dB impedance bandwidth, which is 25 MHz higher than that of the antenna without DGS. More importantly, isolation improvements have been increased from 8.5 to 31.3 dB by using the decoupling technique when the antennas are placed with a 0.032 λ0 edge-to-edge distance, where λ0 is the free-space wavelength. Therefore, this technique can be widely applied to improve isolation in a compact and low profile antenna system.

Journal ArticleDOI
TL;DR: In this article, a power MOSFET-based push-pull configuration nanosecond-pulse generator has been designed, constructed, and characterized to permeabilize cells for biological and medical applications.
Abstract: A power MOSFET-based push–pull configuration nanosecond-pulse generator has been designed, constructed, and characterized to permeabilize cells for biological and medical applications. The generator can deliver pulses with durations ranging from 80 ns up to 1 µs and pulse amplitudes up to 1.4 kV. The unit has been tested for in vitro experiments on a medulloblastoma cell line. Following the exposure of cells to 100, 200, and 300 ns electric field pulses, permeabilization tests were carried out, and viability tests were conducted to verify the performance of the generator. The maximum temperature rise of the biological load was also calculated based on Joule heating energy conservation and experimental validation. Our results indicate that the developed device has good capabilities to achieve well-controlled electro-manipulation in vitro.

Journal ArticleDOI
TL;DR: In this paper, a 2 kW, 3 dB tandem hybrid coupler for the frequency range of 155-225 MHz has been developed and used in a prototype of ICRF system of Tokamak.
Abstract: Design and development of 2 kW, 3 dB tandem hybrid coupler for the frequency range of 155–225 MHz has been presented in this paper. The developed 3 dB coupler is to be used in a prototype of Ion Cyclotron Resonance Frequency (ICRF) system of Tokamak, which has been developed to test the resilience of ICRF network during continuously variable RF load excursions. The 3 dB coupler divides the RF power between two antennae of the prototype and protects the RF source by coupling of reflected power to the isolated port. The developed coupler shows excellent coupling flatness of −3 ± 0.3 dB over 38% of fractional bandwidth and also provides voltage standing wave ratio (VSWR) <1.3, isolation better than 32 dB and return loss better than 25 dB in full band. The presented work establishes a technique which can be useful for the development of high-power hybrid coupler in the range of high frequency (HF), very high frequency (VHF) and ultra high frequency (UHF).

Journal ArticleDOI
TL;DR: Results show that the miniaturized MIMO diversity antenna is undoubtedly a capable contender for communications supporting an extremely wide impedance bandwidth along with band-notched features for WLAN and WiMAX.
Abstract: In this article, an extremely wideband, isolation-enhanced, low-profile “Multiple-Input-Multiple-Output” (MIMO) antenna along with dual-band-notched features has been investigated. The antenna proposed herein, possesses two mutually orthogonal staircase-etched radiators for achieving a wide bandwidth. The radiating elements are placed mutually perpendicular in order to achieve polarization diversity and high isolation, i.e. for minimization of mutual coupling effect between adjacent radiating elements. The antenna exhibits an extremely wide frequency bandwidth covering 1.2–19.4 GHz except two frequency band notches centered at 3.5 and 5.5 GHz, respectively, originated due to the incorporation of a “Rectangular Complementary Split Ring Resonator (RCSRR)” structure and by etching dual “L-shaped” slits in the ground plane. The center frequency of the notched bands is adjusted by fine tuning of the dimensions of the incorporated band-notching structures. Isolation level (S21) better than −20 dB has been obtained due to the insertion of a “T-shaped” parasitic element as a decoupling structure. A prototype of the proposed antenna having dimension of 20 mm × 20 mm (0.08 λo × 0.08 λo) is fabricated and the antenna responses have been measured. Obtained results show that the miniaturized MIMO diversity antenna is undoubtedly a capable contender for communications supporting an extremely wide impedance bandwidth along with band-notched features for WLAN and WiMAX.

Journal ArticleDOI
TL;DR: In this article, a low profile, compact quarter-mode substrate-integrated waveguide (QMSIW)-based antennas are proposed for wireless Local Area Network (WLAN) at 5.2/5.5 GHz and Wireless Body Area Networks (WBAN), respectively.
Abstract: In this work, simple, low profile, compact quarter-mode substrate-integrated waveguide (QMSIW)-based antennas are proposed for Wireless Local Area Network (WLAN) at 5.2/5.5 GHz and Wireless Body Area Network (WBAN) at 5.8 GHz, respectively. By implementing QMSIW technique, the electrical size of the antenna is reduced up to 1/4th of the conventional circular SIW cavities. Thanks to the quarter mode concept, the antenna size is reduced significantly by preserving its dominant mode. The resonant frequency of the dominant mode TM010 is independently tuned at 5.2, 5.5, and 5.8 GHz after loading the QMSIW cavity with metalized via holes, subsequently. The on-body performance of the antenna is verified on pork tissues at 5.8 GHz and it is found to be insensitive with respect to surroundings. The measured gain and simulated efficiency of the proposed antenna at 5.8 GHz in free space are 4.8 dBi and 92%, while in the proximity of pork tissues values are 3.25 dBi and 57%, respectively. Moreover, the measurement results demonstrate a good matching with the simulation results.

Journal ArticleDOI
TL;DR: In this paper, a compact and light-weight horn mounted cylindrical dielectric resonator antenna (CDRA) fed by substrate integrated waveguide (SIW) resonator has been investigated for high gain and multiband applications.
Abstract: A novel design of compact and light-weight horn mounted cylindrical dielectric resonator antenna (CDRA) fed by substrate integrated waveguide (SIW) resonator has been investigated for high gain and multiband applications. SIW resonator contains two closely spaced longitudinal slots of equal length and unequal width to excite the CDRA. These slots are responsible for introducing triple resonating bands. The excited mode in dielectric resonator by longitudinal slots is EH11δ mode. The achieved impedance bandwidths are 65, 180, and 240 MHz at resonant frequencies 9.78, 10.58, and 11.84 GHz, respectively, for |S11| <−10 dB. Copper-taped horn enhances the gain of antenna more than 2 dB for all resonating bands. The measured peak value of gain is 9.3 dBi at ~11.84 GHz.