scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Applied Meteorology and Climatology in 2009"


Journal ArticleDOI
TL;DR: In this paper, the characteristics of urban heat island (UHI) and boundary layer structures in the Beijing area, China, are analyzed using conventional and Moderate Resolution Imaging Spectroradiometer (MODIS) observations.
Abstract: In this paper, the characteristics of urban heat island (UHI) and boundary layer structures in the Beijing area, China, are analyzed using conventional and Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM) is used to simulate these urban weather features for comparison with observations. WRF is also used to test the sensitivity of model simulations to different urban land use scenarios and urban building structures to investigate the impacts of urbanization on surface weather and boundary layer structures. Results show that the coupled WRF/Noah/UCM modeling system seems to be able to reproduce the following observed features reasonably well: 1) the diurnal variation of UHI intensity; 2) the spatial distribution of UHI in Beijing; 3) the diurnal variation of wind speed and direction, and interactions between mountain–valley circulations and UHI; 4) small-scale boundary layer conv...

439 citations


Journal ArticleDOI
TL;DR: In this article, the authors used trivariate thin-plate smoothing splines to interpolate daily weather data for all of Canada, at a spatial resolution of 300 arc s of latitude and longitude.
Abstract: The application of trivariate thin-plate smoothing splines to the interpolation of daily weather data is investigated. The method was used to develop spatial models of daily minimum and maximum temperature and daily precipitation for all of Canada, at a spatial resolution of 300 arc s of latitude and longitude, for the period 1961–2003. Each daily model was optimized automatically by minimizing the generalized cross validation. The fitted trivariate splines incorporated a spatially varying dependence on ground elevation and were able to adapt automatically to the large variation in station density over Canada. Extensive quality control measures were performed on the source data. Error estimates for the fitted surfaces based on withheld data across southern Canada were comparable to, or smaller than, errors obtained by daily interpolation studies elsewhere with denser data networks. Mean absolute errors in daily maximum and minimum temperature averaged over all years were 1.1° and 1.6°C, respectiv...

350 citations


Journal ArticleDOI
TL;DR: In this paper, the radial dependence of the height of the maximum wind speed in a hurricane, which is found to lower with increasing inertial stability (which in turn depends on increasing wind speed and decreasing radius) near the eyewall, is examined.
Abstract: This article examinesthe radial dependence of the height of the maximum wind speed in a hurricane, which is found to lower with increasing inertial stability (which in turn depends on increasing wind speed and decreasing radius) near the eyewall. The leveling off, or limiting value, of the marine drag coefficient in high winds is also examined. The drag coefficient, given similar wind speeds, is smaller for smaller-radii storms; enhanced sea sprayby short or breaking waves is speculatedas a cause. Afitting technique of dropsonde wind profiles is used to model the shape of the vertical profile of mean horizontal wind speeds in the hurricane boundary layer, using only the magnitude and radius of the ‘‘gradient’’ wind. The method slightly underestimates the surface winds in small but intense storms, but errors are less than 5% near the surface. The fit is then applied to a slab layer hurricane wind field model, and combined with a boundary layer transition model to estimate surface winds over both marine and land surfaces.

250 citations


Journal ArticleDOI
TL;DR: In this article, the authors used both meteorological observations and guess fields mainly issued from the newly reanalyzed atmospheric model 40-yr ECMWF Re-Analysis (ERA-40) data and ran on an hourly basis over a period starting in the winter of 1958/59 until recent past winters.
Abstract: Since the early 1990s, Meteo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratigraphy, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions (massifs) in the French Alps and the Pyrenees. This Systeme d’Analyse Fournissant des Renseignements Atmospheriques a la Neige (SAFRAN)–Crocus–Modele Expert de Prevision du Risque d’Avalanche (MEPRA) model chain (SCM), usually applied to operational daily avalanche forecasting, is here used for retrospective snow and climate analysis. For this study, the SCM chain used both meteorological observations and guess fields mainly issued from the newly reanalyzed atmospheric model 40-yr ECMWF Re-Analysis (ERA-40) data and ran on an hourly basis over a period starting in the winter of 1958/59 until recent past winters. Snow observations were finally used for validation, and the results presented here concern only the main climatic features of the al...

239 citations


Journal ArticleDOI
TL;DR: The SAFRAN 2-m air temperature and precipitation climatology shows that the climate of the French Alps is temperate and is mainly determined by atmospheric westerly flow conditions as mentioned in this paper.
Abstract: Since the early 1990s, Meteo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratification, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions in France. Given the lack of sufficient directly observed long-term snow data, this “SAFRAN”–Crocus–“MEPRA” (SCM) model chain, usually applied to operational avalanche forecasting, has been used to carry out and validate retrospective snow and weather climate analyses for the 1958–2002 period. The SAFRAN 2-m air temperature and precipitation climatology shows that the climate of the French Alps is temperate and is mainly determined by atmospheric westerly flow conditions. Vertical profiles of temperature and precipitation averaged over the whole period for altitudes up to 3000 m MSL show a relatively linear variation with altitude for different mountain areas with no constraint of that kind imposed by the analysis scheme itself. Over the ob...

237 citations


Journal ArticleDOI
TL;DR: In this article, a 120-sensor network deployed across two watersheds in 2005-06 exhibited finescale (,1000m extent) temperature differences of over 28C for daily minima and over 48c for daily maxima.
Abstract: Landscape-driven microclimates in mountainous terrain pose significant obstacles to predicting the response of organisms to atmospheric warming, but few if any studies have documented the extent of such finescale variation over large regions. This paper demonstrates that ground-level temperature regimes in Great Smoky Mountains National Park (Tennessee and North Carolina) vary considerably over fine spatial scales and are only partially linked to synoptic weather patterns and environmental lapse rates. A 120-sensor network deployed across two watersheds in 2005‐06 exhibited finescale (,1000-m extent) temperature differences of over 28C for daily minima and over 48C for daily maxima. Landscape controls over minimum temperatures were associated with finescale patterns of soil moisture content, and maximum temperatures were associated with finescale insolation differences caused by topographic exposure and vegetation cover. By linking the sensor array data to 10 regional weather stations and topographic variables describing site radiation load and moisture content, multilevel spatial models of 30-m resolution were constructed to map daily temperatures across the 2090-km 2 park, validated with an independent 50-sensor network. Maps reveal that different landscape positions do not maintain relative differences in temperature regimes across seasons. Near-stream locations are warmer in the winter and cooler in the summer, and sites of low elevation more closely track synoptic weather patterns than do wetter high-elevation sites. This study suggests a strong interplay between near-ground heat and water balances and indicates that the influence of past and future shifts in regional temperatures on the park’s biota may be buffered by soil moisture surfeits from high regional rainfall.

197 citations


Journal ArticleDOI
TL;DR: In this article, the authors found a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. They used the GOES-R Geostationary Lightning Mapper.
Abstract: Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.

172 citations


Journal ArticleDOI
TL;DR: In this paper, a climatology of nocturnal low-level jets (LLJ) is presented for the topographically flat measurement site at Cabauw, the Netherlands.
Abstract: A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic f...

164 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an objective methodology for establishing operational drought definitions and demonstrate the advantages of this methodology by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas.
Abstract: Drought is a complex phenomenon that is difficult to accurately describe because its definition is both spatially variant and context dependent. Decision makers in local, state, and federal agencies commonly use operational drought definitions that are based on specific drought index thresholds to trigger water conservation measures and determine levels of drought assistance. Unfortunately, many state drought plans utilize operational drought definitions that are derived subjectively and therefore may not be appropriate for triggering drought responses. This paper presents an objective methodology for establishing operational drought definitions. The advantages of this methodology are demonstrated by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas. Results indicate that using subjectively derived operational drought definitions may ...

146 citations


Journal ArticleDOI
TL;DR: This paper examined the sensitivity of simulated U.S. warm-season precipitation in the Weather Research and Forecasting model (WRF), used as a nested regional climate model, to variations in model setup.
Abstract: This note examines the sensitivity of simulated U.S. warm-season precipitation in the Weather Research and Forecasting model (WRF), used as a nested regional climate model, to variations in model setup. Numerous options have been tested and a few of the more interesting and unexpected sensitivities are documented here. Specifically, the impacts of changes in convective and land surface parameterizations, nest feedbacks, sea surface temperature, and WRF version on mean precipitation are evaluated in 4-month-long simulations. Running the model over an entire season has brought to light some issues that are not otherwise apparent in shorter, weather forecast–type simulations, emphasizing the need for careful scrutiny of output from any model simulation. After substantial testing, a reasonable model setup was found that produced a definite improvement in the climatological characteristics of precipitation over that from the National Centers for Environmental Prediction–National Center for Atmospheric...

135 citations


Journal ArticleDOI
TL;DR: In this paper, a radar reflectivity data were obtained from two C-band Doppler weather radars covering the land surface of the Netherlands (≈3.55 × 104 km2), from these reflectivities, 10 yr of radar rainfall depths were constructed for durations D of 1, 2, 4, 8, 12, and 24 h with a spatial resolution of 2.4 km and data availability of approximately 80%.
Abstract: Weather radars give quantitative precipitation estimates over large areas with high spatial and temporal resolutions not achieved by conventional rain gauge networks. Therefore, the derivation and analysis of a radar-based precipitation “climatology” are highly relevant. For that purpose, radar reflectivity data were obtained from two C-band Doppler weather radars covering the land surface of the Netherlands (≈3.55 × 104 km2). From these reflectivities, 10 yr of radar rainfall depths were constructed for durations D of 1, 2, 4, 8, 12, and 24 h with a spatial resolution of 2.4 km and a data availability of approximately 80%. Different methods are compared for adjusting the bias in the radar precipitation depths. Using a dense manual gauge network, a vertical profile of reflectivity (VPR) and a spatial adjustment are applied separately to 24-h (0800–0800 UTC) unadjusted radar-based precipitation depths. Further, an automatic rain gauge network is employed to perform a mean-field bias adjustment to ...

Journal ArticleDOI
TL;DR: In this article, a split-window approach for estimating cloud properties from satellite imagers is proposed for the generation of a cloud climatology from the Advanced Very High Resolution Radiometer (AVHRR), which provides sampling roughly four times per day.
Abstract: This paper demonstrates that the split-window approach for estimating cloud properties can improve upon the methods commonly used for generating cloud temperature and emissivity climatologies from satellite imagers. Because the split-window method provides cloud properties that are consistent for day and night, it is ideally suited for the generation of a cloud climatology from the Advanced Very High Resolution Radiometer (AVHRR), which provides sampling roughly four times per day. While the split-window approach is applicable to all clouds, this paper focuses on its application to cirrus (high semitransparent ice clouds), where this approach is most powerful. An optimal estimation framework is used to extract estimates of cloud temperature, cloud emissivity, and cloud microphysics from the AVHRR split-window observations. The performance of the split-window approach is illustrated through the diagnostic quantities generated by the optimal estimation approach. An objective assessment of the perfo...

Journal ArticleDOI
TL;DR: In this article, a dataset consisting of one year of CloudSat Cloud Profiling Radar (CPR) near-surface radar reflectivity Z associated with dry snowfall is examined.
Abstract: A dataset consisting of one year of CloudSat Cloud Profiling Radar (CPR) near-surface radar reflectivity Z associated with dry snowfall is examined in this study. The CPR observations are converted to snowfall rates S using derived Ze–S relationships, which were created from backscatter cross sections of various nonspherical and spherical ice particle models. The CPR reflectivity histograms show that the dominant mode of global near-surface dry snowfall has extremely light reflectivity values (∼3–4 dBZe), and an estimated 94% of all CPR dry snowfall observations are less than 10 dBZe. The average conditional global snowfall rate is calculated to be about 0.28 mm h−1, but is regionally highly variable as well as strongly sensitive to the ice particle model chosen. Further, ground clutter contamination is found in regions of complex terrain even when a vertical reflectivity continuity threshold is utilized. The potential of future multifrequency spaceborne radars is evaluated using proxy 35–13.6-GH...

Journal ArticleDOI
TL;DR: In this paper, two independent ground-based passive remote sensing methods are used to retrieve lower-tropospheric temperature and humidity profiles in clear-sky cases by applying a unified optimal estimation scheme to each instrument.
Abstract: Two independent ground-based passive remote sensing methods are used to retrieve lower-tropospheric temperature and humidity profiles in clear-sky cases. A simulation study for two distinctly different climatic zones is performed to evaluate the accuracies of a standard microwave profiler [humidity and temperature profiler (HATPRO)] and an infrared spectrometer [Atmospheric Emitted Radiance Interferometer (AERI)] by applying a unified optimal estimation scheme to each instrument. Different measurement modes for each instrument are also evaluated in which the retrieval uses different spectral channels and observational view angles. In addition, both instruments have been combined into the same physically consistent retrieval scheme to evaluate the differences between a combined retrieval relative to the single-instrument retrievals. In general, retrievals derived from only infrared measurements yield superior RMS error and bias to retrievals derived only from microwave measurements. The AERI retri...

Journal ArticleDOI
TL;DR: In this paper, partial-duration maximum precipitation series from Historical Climatology Network stations are used as a basis for assessing trends in extreme-precipitation recurrence-interval amounts.
Abstract: Partial-duration maximum precipitation series from Historical Climatology Network stations are used as a basis for assessing trends in extreme-precipitation recurrence-interval amounts. Two types of time series are analyzed: running series in which the generalized extreme-value (GEV) distribution is fit to separate overlapping 30-yr data series and lengthening series in which more recent years are iteratively added to a base series from the early part of the record. Resampling procedures are used to assess both trend and field significance. Across the United States, nearly two-thirds of the trends in the 2-, 5-, and 10-yr return-period rainfall amounts, as well as the GEV distribution location parameter, are positive. Significant positive trends in these values tend to cluster in the Northeast, western Great Lakes, and Pacific Northwest. Slopes are more pronounced in the 1960–2007 period when compared with the 1950–2007 interval. In the Northeast and western Great Lakes, the 2-yr return-period pr...

Journal ArticleDOI
TL;DR: In this paper, back-trajectory analyses were used to classify the air masses arriving at El Arenosillo by means of back trajectories and to characterize the aerosol within each type by using the spectral signature of the Angstrom exponent (AE).
Abstract: The Aerosol Robotic Network (AERONET) site “El Arenosillo,” equipped with a Cimel sun photometer, has been in operation since 2000 The data collected there are analyzed to establish an aerosol synoptic climatological description that is representative of the region Different air masses and aerosol types are present over the site depending on the synoptic conditions The frequent intrusion of dust from the Sahara Desert at El Arenosillo suggested the use of back trajectories to determine the airmass origins of other types of aerosol observed there The focus of this study is to classify the air masses arriving at El Arenosillo by means of back-trajectory analyses and to characterize the aerosol within each type by means of the aerosol optical depth (AOD) and its spectral signature, given as the Angstrom exponent (AE) The goal is to determine how aerosols observed over the station (receptor site) differ depending on source region and transport pathways Two classification methods are used, one b

Journal ArticleDOI
TL;DR: In this paper, the authors present a methodological modification to the daily Drought Code (DC) to allow its approximation using monthly data, which still retains its ability to capture moisture trends in deep organic layers.
Abstract: The Fire Weather Index System has been in use across Canada for the past 30 years in the daily operations of fire management agencies. As part of this system, the Drought Code (DC) was developed to act as a daily index of water stored in the soil. A major obstacle to the completion of climate risk analyses on the DC is that lengthy series of daily temperature and precipitation are not available for large portions of the circumboreal forest. Here the authors present a methodological modification to the daily DC to allow its approximation using monthly data. This new Monthly Drought Code (MDC) still retains its ability to capture moisture trends in deep organic layers. On the basis of high-resolution temperature and precipitation data, an analysis of summer moisture availability across Canada over 1901–2002 is presented. The driest periods on record were from the 1920s to the early 1960s, with the driest years being 1955, 1958, and 1961. The wettest period was from the mid-1960s to the 1980s. For t...

Journal ArticleDOI
TL;DR: In this article, the deep soil temperature in the soil temperature force-restore (FR) model is adjusted to optimize the 2m air temperature during the night, when surface forcing is minimal, providing significant advantages over other methods of deep soil moisture initialization.
Abstract: The Pleim–Xiu land surface model (PX LSM) has been improved by the addition of a second indirect data assimilation scheme. The first, which was described previously, is a technique in which soil moisture is nudged according to the biases in 2-m air temperature and relative humidity between the model- and observation-based analyses. The new technique involves nudging the deep soil temperature in the soil temperature force–restore (FR) model according to model bias in 2-m air temperature only during nighttime. While the FR technique is computationally efficient and very accurate for the special conditions for which it was derived, it is very dependent on the deep soil temperature that drives the restoration term of the surface soil temperature equation. Thus, adjustment of the deep soil temperature to optimize the 2-m air temperature during the night, when surface forcing is minimal, provides significant advantages over other methods of deep soil moisture initialization. Simulations of the Weather ...

Journal ArticleDOI
TL;DR: In this article, a computational fluid dynamics (CFD) model coupled to a mesoscale model [5-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5)] is numerically examined using a one-way nesting method.
Abstract: Flow and pollutant dispersion in a densely built-up area of Seoul, Korea, are numerically examined using a computational fluid dynamics (CFD) model coupled to a mesoscale model [fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)]. The CFD model used is a Reynolds-averaged Navier–Stokes equations model with the renormalization group k − e turbulence model. A one-way nesting method is employed in this study. MM5-simulated data are linearly interpolated in time and space to provide time-dependent boundary conditions for the CFD model integration. In the MM5 simulation, four one-way nested computational domains are considered, and the innermost domain with a horizontal grid size of 1 km covers the Seoul metropolitan area and its adjacent areas, including a part of the Yellow Sea. The NCEP final analysis data are used as initial and boundary conditions for MM5. MM5 is integrated for 48 h starting from 0300 LST 1 June 2004 and the coupled CFD–M...

Journal ArticleDOI
TL;DR: This paper used principal component analysis on monthly precipitation and temperature data from a network of 195 climate stations statewide and an ancillary gridded database to identify regional patterns of climate variability within the state of California.
Abstract: A novel approach is presented to objectively identify regional patterns of climate variability within the state of California using principal component analysis on monthly precipitation and temperature data from a network of 195 climate stations statewide and an ancillary gridded database. The confluence of large-scale circulation patterns and the complex geography of the state result in 11 regional modes of climate variability within the state. A comparison between the station and gridded analyses reveals that finescale spatial resolution is needed to adequately capture regional modes in complex orographic and coastal settings. Objectively identified regions can be employed not only in tracking regional climate signatures, but also in improving the understanding of mechanisms behind regional climate variability and climate change. The analysis has been incorporated into an operational tool called the California Climate Tracker.

Journal ArticleDOI
TL;DR: In this paper, the authors used 9-year (1998-2006) mean daily cumulative rainfall data from both the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis and rain gauge stations to examine spatial variability in warm-season rainfall events around Oklahoma City (OKC).
Abstract: This study used 9 yr (1998–2006) of warm-season (June–September) mean daily cumulative rainfall data from both the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis and rain gauge stations to examine spatial variability in warm-season rainfall events around Oklahoma City (OKC). It was hypothesized that with warm-season rainfall variability, under weakly forced conditions, a rainfall anomaly would be present in climatological downwind areas of OKC. Results from both satellite and gauge-based analyses revealed that the north-northeastern (NNE) regions of the metropolitan OKC area were statistically wetter than other regions. Climatological sounding and reanalysis data revealed that, on average, the NNE area of OKC was the climatologically downwind region, confirming that precipitation modification by the urban environment may be more dominant than agricultural/topographic influences on weakly forced days. The study also established that satellite precipitation estimat...

Journal ArticleDOI
TL;DR: In this paper, a new approach to simulating the urban environment with a mesocale model has been developed to identify efficient strategies for mitigating increases in surface air temperatures associated with the urban heat island (UHI).
Abstract: A new approach to simulating the urban environment with a mesocale model has been developed to identify efficient strategies for mitigating increases in surface air temperatures associated with the urban heat island (UHI). A key step in this process is to define a “global” roughness for the cityscape and to use this roughness to diagnose 10-m temperature, moisture, and winds within an atmospheric model. This information is used to calculate local exchange coefficients for different city surface types (each with their own “local roughness” lengths); each surface’s energy balances, including surface air temperatures, humidity, and wind, are then readily obtained. The model was run for several summer days in 2001 for the New York City five-county area. The most effective strategy to reduce the surface radiometric and 2-m surface air temperatures was to increase the albedo of the city (impervious) surfaces. However, this caused increased thermal stress at street level, especially noontime thermal str...

Journal ArticleDOI
TL;DR: In this article, a stochastic space-time model based on a rainfall advection model, assimilated using a Kalman filter, is presented for reconstruction of rainfall spatial-temporal dynamics from a wireless microwave network.
Abstract: A novel approach for reconstruction of rainfall spatial–temporal dynamics from a wireless microwave network is presented. It employs a stochastic space–time model based on a rainfall advection model, assimilated using a Kalman filter. The technique aggregates the data in time and space along the direction of motion of the rainfall field, which is recovered from the simultaneous observation of a multitude of microwave links. The technique is applied on a standard microwave communication network used by a cellular communication system, comprising 23 microwave links, and it allows for observation of near-surface rainfall at the temporal resolutions of 1 min. The accuracy of the method is demonstrated by comparing instantaneous rainfall estimates with measurements from five rain gauges, reaching correlations of up to 0.85 at the 1-min time interval with a bias and RMSE of −0.2 and 4.2 mm h−1, respectively, and up to 0.96 with RMSE of 1.6 mm h−1 at the 10-min time interval for a 22-h intensive rainsto...

Journal ArticleDOI
TL;DR: In this article, a 1-month period during the rainy season of the region successfully simulate the satellite-observed regional distribution and diurnal variation of rainfall, and the simulation results show that convection develops across a wide area over the mountainous areas of the island at similar times in the afternoon with the development of thermally induced local circulations.
Abstract: Precipitation measurements from the Tropical Rainfall Measuring Mission satellite indicate that annual rainfall over the sea in the vicinity of western Sumatra Island is among the highest on the earth, and most of this rainfall occurs during nighttime. Surface meteorological observations at Tabing on the western coast of the island show frequent occurrences of sudden offshore winds accompanied by an abrupt drop in surface temperatures in the late afternoon and evening. Model simulations for a 1-month period during the rainy season of the region successfully simulate the satellite-observed regional distribution and diurnal variation of rainfall. The simulation results show that convection develops across a wide area over the mountainous areas of the island at similar times in the afternoon with the development of thermally induced local circulations. At these times of the day, convection over the sea along the western coast of the island is suppressed by the thermally and topographically induced d...

Journal ArticleDOI
TL;DR: The spatial and temporal patterns of rainfall were examined using not only statistical techniques such as exceedance probabilities, spatial correlation structure, harmonic analysis, and fractal analysis but also marginal statistics such as mean and standard deviation.
Abstract: The water resource of the Blue Nile River is of key regional importance to the northeastern African countries. However, little is known about the characteristics of the rainfall in the basin. In this paper, the authors presented the space–time variability of the rainfall in the vicinity of Lake Tana, which is the source of the Blue Nile River. The analysis was based on hourly rainfall data from a network of newly installed rain gauges, and cloud temperature indices from the Meteosat Second Generation (MSG–2) Spinning Enhanced Visible and Infrared Imager (SEVIRI) satellite sensor. The spatial and temporal patterns of rainfall were examined using not only statistical techniques such as exceedance probabilities, spatial correlation structure, harmonic analysis, and fractal analysis but also marginal statistics such as mean and standard deviation. In addition, a convective index was calculated from remote sensing images to infer the spatial and temporal patterns of rainfall. Heavy rainfall is frequen...

Journal ArticleDOI
TL;DR: In this article, simulated and observed rain DSDs are used to evaluate moment estimators, and seven estimators for gamma DSD parameters are evaluated in terms of the biases and fractional errors of five integral parameters: radar reflectivity, differential reflectivity (ZDR), rainfall rate (R), mean volume diameter (Dm), and total number concentration (NT).
Abstract: There have been debates and differences of opinion over the validity of using drop size distribution (DSD) models to characterize precipitation microphysics and to retrieve DSD parameters from multiparameter radar measurements. In this paper, simulated and observed rain DSDs are used to evaluate moment estimators. Seven estimators for gamma DSD parameters are evaluated in terms of the biases and fractional errors of five integral parameters: radar reflectivity (ZH), differential reflectivity (ZDR), rainfall rate (R), mean volume diameter (Dm), and total number concentration (NT). It is shown that middle-moment estimators such as M234 (using the second-third-fourth moments) produce smaller errors than lower- and higher-moment estimators if the DSD follows the gamma distribution. However, if there are model errors, the performance of M234 degrades. Even though the DSD parameters can be biased in moment estimators, integral parameters are usually not. Maximum likelihood (ML) and L-moment (LM) estima...

Journal ArticleDOI
TL;DR: In this article, a mixed model is proposed to avoid the complexities associated with the dynamic procedure and to allow higher levels of reconstruction, combining a standard TKE-1.5 eddy-viscosity closure with velocity reconstruction to form a simple and efficient turbulence model.
Abstract: The evaluation of turbulence closure models for large-eddy simulation (LES) has primarily been performed over flat terrain, where comparisons with theory and observations are simplified. The authors have previously developed improved closure models using explicit filtering and reconstruction, together with a dynamic eddy-viscosity model and a near-wall stress term. This dynamic reconstruction model (DRM) is a mixed model, combining scale-similarity and eddy-viscosity components. The DRM gave improved results over standard eddy-viscosity models for neutral boundary layer flow over flat but rough terrain, yielding the expected logarithmic velocity profiles near the wall. The results from the studies over flat terrain are now extended to flow over full-scale topography. The test case is flow over Askervein Hill, an isolated hill in western Scotland, where a field campaign was conducted in 1983 with the purpose of capturing wind data representing atmospheric episodes under near-neutral stratification and steady wind conditions. This widely studied flow provides a more challenging test case for the new turbulence models because of the sloping terrain and separation in the lee of the hill. Since an LES formulation is used, a number of simulation features are different than those typically used in the Askervein literature. The simulations are inherently unsteady, the inflow conditions are provided by a separate turbulent flow database, and (uniquely herein) ensemble averages of the turbulent flow results are used in comparisons with field data. Results indicate that the DRM can improve the predictions offlow speedup and especially turbulent kinetic energy (TKE) over the hill when compared with the standard TKE-1.5 model. This is the first study, to the authors’ knowledge, in which explicit filtering and reconstruction (scale similarity) and dynamic turbulence models have been applied to full-scale simulations of the atmospheric boundary layer over terrain. Simulations with the lowest level of reconstruction are straightforward. Increased levels of reconstruction, however, present difficulties when used with a dynamic eddy-viscosity model. An alternative mixed model is proposed to avoid the complexities associated with the dynamic procedure and to allow higher levels of reconstruction; this mixed model combines a standard TKE-1.5 eddy-viscosity closure with velocity reconstruction to form a simple and efficient turbulence model that gives good results for both mean flow and turbulence over Askervein Hill. The results indicate that significant improvements in LES over complex terrain can be obtained by the use of mixed models that combine scale-similarity and eddy-viscosity components.

Journal ArticleDOI
TL;DR: In this paper, three years of data over the central North Pacific Ocean were analyzed and the results of the data analysis show a consistent logarithmic increase in convective rainfall rate with increasing lightning rates.
Abstract: Lightning data from the Pacific Lightning Detection Network (PacNet) and Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite were compared with TRMM precipitation radar products and latent heating and hydrometeor data. Three years of data over the central North Pacific Ocean were analyzed. The data were divided into winter (October–April) and summer (June–September) seasons. During the winter, the thunderstorms were typically embedded in cold fronts associated with eastward-propagating extratropical cyclones. Summer thunderstorms were triggered by cold upper-level lows associated with the tropical upper-tropospheric trough (TUTT). Concurrent lightning and satellite data associated with the storms were averaged over 0.5° × 0.5° grid cells and a detection efficiency correction model was applied to quantify the lightning rates. The results of the data analysis show a consistent logarithmic increase in convective rainfall rate with increasing lightning rates. Mo...

Journal ArticleDOI
TL;DR: In this article, the Global Precipitation Climatology Project (GPCP) data set was used to estimate cold-climate precipitation in the satellite data set and the results showed that the GPCP data set successfully overcomes a current limitation in satellite meteorology, namely the estimation of cold climate precipitation.
Abstract: It is very important to know how much rain and snow falls around the world for uses that range from crop forecasting to disaster response, drought monitoring to flood forecasting, and weather analysis to climate research. Precipitation is usually measured with rain gauges, but rain gauges don t exist in areas that are sparsely populated, which tends to be a good portion of the globe. To overcome this, meteorologists use satellite data to estimate global precipitation. However, it is difficult to estimate rain and especially snow in cold climates using most current satellites. The satellite sensors are often "confused" by a snowy or frozen surface and therefore cannot distinguish precipitation. One commonly used satellite-based precipitation data set, the Global Precipitation Climatology Project (GPCP) data, overcomes this frozen-surface problem through the innovative use of two sources of satellite data, the Television Infrared Observation Satellite Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). Though the GPCP estimates are generally considered a very reliable source of precipitation, it has been difficult to assess the quality of these estimates in cold climates due to the lack of gauges. Recently, the Finnish Meteorological Institute (FMI) has provided a 12-year span of high-quality daily rain gauge observations, covering all of Finland, that can be used to compare with the GPCP data to determine how well the satellites estimate cold-climate precipitation. Comparison of the monthly GPCP satellite-based estimates and the FMI gauge observations shows remarkably good agreement, with the GPCP estimates being 6% lower in the amount of precipitation than the FMI observations. Furthermore, the month-to-month correlation between the GPCP and FMI is very high at 0.95 (1.0 is perfect). The daily GPCP estimates replicate the FMI daily occurrences of precipitation with a correlation of 0.55 in the summer and 0.45 in the winter. The winter result indicates the GPCP estimates have skill in "seeing" snowfall, which is the most challenging situation. Thus, the GPCP data set successfully overcomes a current limitation in satellite meteorology, namely the estimation of cold-climate precipitation. The success of the GPCP data set bodes well for future missions, whose instrumentation is specifically designed to give even more information for addressing cold-climate precipitation.

Journal ArticleDOI
TL;DR: In this article, pollution aerosols acting as cloud condensation nuclei (CCN) have the potential to alter warm rain clouds via the aerosol first and second indirect effects in which they modify the cloud droplet population, cloud lifetime and size, rainfall efficiency, and radiation balance from increased albedo.
Abstract: Pollution aerosols acting as cloud condensation nuclei (CCN) have the potential to alter warm rain clouds via the aerosol first and second indirect effects in which they modify the cloud droplet population, cloud lifetime and size, rainfall efficiency, and radiation balance from increased albedo. For constant liquid water content, an increase in CCN concentration (NCCN) tends to produce an increased concentration of droplets with smaller diameters. This reduces the collision and coalescence rate, and thus there is a local reduction in rainfall. While this process applies to warm clouds, it does not identically carry over to mixed-phase clouds in which crystal nucleation, crystal riming, crystal versus droplet fall speed, and collection efficiency play active roles in determining precipitation amount. Sulfate-based aerosols serve as very efficient cloud nuclei but are not effective as ice-forming nuclei. In clouds where precipitation formation is dominated by the ice phase, NCCN influences precipi...