scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Fish Biology in 2019"


Journal ArticleDOI
TL;DR: It is made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm.
Abstract: Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations.

177 citations


Journal ArticleDOI
TL;DR: An overview of recent achievements in the field of cortisol measurement in fishes is presented, discussing new alternatives to blood, whole body and eggs as matrices for cortisol measurement, notably mucus, faeces, water, scales and fins.
Abstract: Stress in teleosts is an increasingly studied topic because of its interaction with growth, reproduction, immune system and ultimately fitness of the animal. Whether it is for evaluating welfare in aquaculture, adaptive capacities in fish ecology, or to investigate effects of human-induced rapid environmental change, new experimental methods to describe stress physiology in captive or wild fish have flourished. Cortisol has proven to be a reliable indicator of stress and is considered the major stress hormone. Initially principally measured in blood, cortisol measurement methods are now evolving towards lower invasiveness and to allow repeated measurements over time. We present an overview of recent achievements in the field of cortisol measurement in fishes, discussing new alternatives to blood, whole body and eggs as matrices for cortisol measurement, notably mucus, faeces, water, scales and fins. In parallel, new analytical tools are being developed to increase specificity, sensitivity and automation of the measure. The review provides the founding principles of these techniques and introduces their potential as continuous monitoring tools. Finally, we consider promising avenues of research that could be prioritised in the field of stress physiology of fishes.

153 citations


Journal ArticleDOI
TL;DR: Brown trout Salmo trutta has two resident and three main facultative migratory life histories, and its migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction.
Abstract: Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.

105 citations


Journal ArticleDOI
TL;DR: A critical assessment of methods suggests a combination of the relative-fullness and presence-absence methods as the optimal approach for the commonly applied feeding studies addressing relative dietary composition in terms of prey diversity and abundance.
Abstract: Studies on the feeding ecology of fish are essential for exploring and contrasting trophic interactions and population and community dynamics within and among aquatic ecosystems. In this respect, many different methods have been adopted for the analysis of fish stomach contents. No consensus has, however, been reached for a standardised methodology despite that for several decades there has been an ongoing debate about which methodical approaches that should be preferred. Here, we critically review and scrutinise methods, addressing their strengths and weaknesses and emphasising inherent problems and possible pitfalls in their use. Although our critical assessment reveals that no completely ideal approach exists, appropriate and reliable procedures can be adopted through careful considerations and implementation. In particular, we advocate that different objectives require different methodical approaches and the choice of method should therefore be closely linked to the research questions that are addressed. For a standardisation of methods, we recommend a combination of the relative-fullness and presence-absence methods as the optimal approach for the commonly applied feeding studies addressing relative dietary composition in terms of prey diversity and abundance. Additionally, we recommend the gravimetric method for objectives related to the quantification of food consumption rates and the numerical method for prey selection studies. DNA-based dietary analysis provides a new and promising complementary approach to visual examination of stomach contents, although some technical challenges still exist. The suggested method standardisation facilitates comparisons across species, ecosystems and time and will enhance the applicability and benefits of fish feeding studies in trophic ecology research.

91 citations


Journal ArticleDOI
TL;DR: This review has two aims: to synthesise the knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and on the proximate bases of EOD and electroreceptor diversity, and to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms.
Abstract: Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak ( 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.

75 citations


Journal ArticleDOI
TL;DR: Wild-collecting expeditions to West Papua, Indonesia are discussed, focused on discovering novel species of rainbowfish (Melanotaeniidae) for breeding in captivity, and sustainability of the aquarium industry is considered in its broadest sense.
Abstract: The global trade in ornamental fish involves c. 125 countries worldwide and is worth c. US $15-30 billion each year. This total is dominated (90%) by freshwater fishes, most of which are sourced from breeding facilities located in developing countries, typically in Asia or South America, but also in Israel, USA and Europe. Some fish are obtained from natural (wild) sources in Asia and South America, but the exact percentage of wild-caught fish is difficult to quantify given a lack of reliable data. Although c. 1000 species of freshwater fishes are widely available (from a total of > 5300 on sale), the most dominant freshwater fishes in the market comprise only 30 species from the orders Cyprinodontiformes, Perciformes, Characiformes and Siluriformes. In this perspectives review, illustrative example case studies of wild-fish collecting (Barcelos and Rio Xingu, Brazil) and breeding projects (Java, Indonesia) are described. In addition, wild-collecting expeditions to West Papua, Indonesia are discussed, focused on discovering novel species of rainbowfish (Melanotaeniidae) for breeding in captivity. Sustainability of the aquarium industry is considered in its broadest sense. The aquarium industry has been portrayed as both a major threat to natural ecosystems, but also as being part of the solution in terms of helping to maintain species when they have gone extinct in the wild or offering an income to impoverished citizens who might otherwise engage in much more destructive practices.

62 citations


Journal ArticleDOI
TL;DR: This review focuses primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies and considers the use of anaesthetics and analgesics and how the authors mark individuals for identification purposes.
Abstract: Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.

59 citations


Journal ArticleDOI
TL;DR: The lateral line system of fishes can detect and perceive the hydrodynamic and physical environment they inhabit and process this sensory information to guide the resultant behaviour through their mechanosensory lateral-line system as discussed by the authors.
Abstract: Fishes are able to detect and perceive the hydrodynamic and physical environment they inhabit and process this sensory information to guide the resultant behaviour through their mechanosensory lateral-line system. This sensory system consists of up to several thousand neuromasts distributed across the entire body of the animal. Using the lateral-line system, fishes perceive water movements of both biotic and abiotic origin. The anatomy of the lateral-line system varies greatly between and within species. It is still a matter of debate as to how different lateral-line anatomies reflect adaptations to the hydrodynamic conditions to which fishes are exposed. While there are many accounts of lateral-line system adaptations for the detection of hydrodynamic signals in distinct behavioural contexts and environments for specific fish species, there is only limited knowledge on how the environment influences intra and interspecific variations in lateral-line morphology. Fishes live in a wide range of habitats with highly diverse hydrodynamic conditions, from pools and lakes and slowly moving deep-sea currents to turbulent and fast running rivers and rough coastal surf regions. Perhaps surprisingly, detailed characterisations of the hydrodynamic properties of natural water bodies are rare. In particular, little is known about the spatio-temporal patterns of the small-scale water motions that are most relevant for many fish behaviours, making it difficult to relate environmental stimuli to sensory system morphology and function. Humans use bodies of water extensively for recreational, industrial and domestic purposes and in doing so often alter the aquatic environment, such as through the release of toxicants, the blocking of rivers by dams and acoustic noise emerging from boats and construction sites. Although the effects of anthropogenic interferences are often not well understood or quantified, it seems obvious that they change not only water quality and appearance but also, they alter hydrodynamic conditions and thus the types of hydrodynamic stimuli acting on fishes. To date, little is known about how anthropogenic influences on the aquatic environment affect the morphology and function of sensory systems in general and the lateral-line system in particular. This review starts out by briefly describing naturally occurring hydrodynamic stimuli and the morphology and neurobiology of the fish lateral-line system. In the main part, adaptations of the fish lateral-line system for the detection and analysis of water movements during various behaviours are presented. Finally, anthropogenic influences on the aquatic environment and potential effects on the fish lateral-line system are discussed.

56 citations


Journal ArticleDOI
TL;DR: This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews the authors' knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability.
Abstract: Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"

52 citations


Journal ArticleDOI
TL;DR: This case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat) provides a wider snapshot of fish assemblages.
Abstract: We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi-lotic nature of canals, we encourage the use of eDNA as a fast and cost-effective tool to detect and monitor whole fish communities.

38 citations


Journal ArticleDOI
TL;DR: The role sound plays in the Ecology of fishes, basic anatomical and physiological adaptations for sound reception and production, the effects of anthropogenic noise and how fishes may be coping to changes in their environment are discussed to put the ecology of fish hearing into the context of the modern underwater soundscape.
Abstract: Underwater sound is directional and can convey important information about the surrounding environment or the animal emitting the sound. Therefore, sound is a major sensory channel for fishes and plays a key role in many life-history strategies. The effect of anthropogenic noise on aquatic life, which may be causing homogenisation or fragmentation of biologically important signals underwater is of growing concern. In this review we discuss the role sound plays in the ecology of fishes, basic anatomical and physiological adaptations for sound reception and production, the effects of anthropogenic noise and how fishes may be coping to changes in their environment, to put the ecology of fish hearing into the context of the modern underwater soundscape.

Journal ArticleDOI
TL;DR: A fresh look at the opportunities from using systems thinking and new open innovation measuring tools to grow sustainable aquaculture is offered.
Abstract: In a world of 9 billion people and a widening income gap between the rich and poor, it is time to rethink how aquaculture can strengthen its contribution to the second UN Sustainable Development Goal (SDG) of zero hunger in our generation. The disparity in the level of sustainable aquaculture development at present, between and within countries, especially regarding human access to farmed aquatic food remains highly variable across the globe. This paper offers a fresh look at the opportunities from using systems thinking and new open innovation measuring tools to grow sustainable aquaculture. Political will in many nations is the main constraint to aquaculture in realising its potential as an: accessible source of micronutrients and nutritious protein; aid to meeting conservation goals; economic prosperity generator where benefits extend to locals and provider of indirect social benefits such as access to education and well-being, among others. Resources to enable strong partnerships (SDG 17) between academia, civic society, government and industry should be prioritised by governments to build a sustainable aquatic food system, accessible to all, forever.

Journal ArticleDOI
TL;DR: This review paper focusses on current knowledge to show how plastic and resistant the taste system in fishes is to various external factors, linked to other sensory inputs and shifts in physiological state of individuals.
Abstract: The adaptability of the taste system in fish has led to a large variety in taste bud morphology, abundance and distribution, as well as in taste physiology characteristics in closely related species with different modes of life and feeding ecology. However, the modifications evoked in the sense of taste, or gustation, particularly during ontogeny when fishes are subject to different environmental variables, remain poorly studied. This review paper focusses on current knowledge to show how plastic and resistant the taste system in fishes is to various external factors, linked to other sensory inputs and shifts in physiological state of individuals. Ambient water temperature is fundamental to many aspects of fish biology and taste preferences are stable to many substances, however, the taste-cell turnover rate strongly depends on water temperature. Taste preferences are stable within water salinity, which gives rise to the possibility that the taste system in anadromous and catadromous fishes will only change minimally after their migration to a new environment. Food-taste selectivity is linked to fish diet and to individual feeding experience as well as the motivation to feed evoked by attractive (water extracts of food) and repellent (alarm pheromone) odours. In contrast, starvation leads to loss of aversion to many deterrent substances, which explains the consumption by starving fishes of new objects, previously refused or just occasionally consumed. Food hardness can significantly modify the final feeding decision to swallow or to reject a grasped and highly palatable food item. Heavy metals, detergents, aromatic hydrocarbons and other water contaminants have the strongest and quickest negative effects on structure and function of taste system in fish and depress taste perception and ability of fishes to respond adequately to taste stimuli after short exposures. Owing to phenotypic plasticity, the taste system can proliferate and partially restore the ability of fishes to respond to food odour after a complete loss of olfaction. In general, the taste system, especially its functionality, is regarded as stable over the life of a fish despite any alteration in their environment and such resistance is vital for maintaining physiological homeostasis.

Journal ArticleDOI
TL;DR: The ornamental aquatic industry and consumers have a responsibility to ensure that wild-caught species are sourced sustainably, legally and to good welfare standards, which should be considered a necessity for the longevity of the industry.
Abstract: The ornamental aquatic industry involves the global commercial trade of live aquatic organisms such as fish, invertebrates and plants. It comprises a range of businesses including collectors, breeders, exporters, importers and retailers. Together, these form a supply chain through which aquatic organisms pass from their point of origin to the end point e.g., domestic aquaria and ponds. On a worldwide basis, the legal and legitimate ornamental aquatic trade is subject to regulation and monitoring throughout the majority of its supply chain. Approximately 90% of ornamental freshwater fish species traded are captive-bred, but, due to their complex breeding cycles, 90-95% of ornamental marine fish species are wild-caught. The ornamental aquatic industry and consumers therefore have a responsibility to ensure that wild-caught species are sourced sustainably, legally and to good welfare standards. Such good practice should be considered a necessity for the longevity, not only of the ornamental aquatic industry, but of the livelihoods which depend on it and the future of ecosystems dependent on such communities.

Journal ArticleDOI
TL;DR: The present state of knowledge indicates a common nature of effect on various ontogenetic stages of fishes, however, understanding of the mechanisms of magnetic sense in fishes and its relevance for ecological outcomes highlights that further progress requires more detailed research.
Abstract: Magnetoreception is the ability of organisms to perceive magnetic fields in the surrounding environment and changes in its properties such as field direction, intensity and gradient, where the effect on organisms can manifest as an array of reactions. As the magnetic sense is found in many taxa, both evolutionarily young and old, it can be assumed that magnetoreception came into existence as one of the first sensory systems. Many studies on the effect of magnetic fields on fishes have considered both fishes that migrate for long distances and those that are more or less sedentary. Research has focused on tracing the perception of the geomagnetic field by fishes and understanding magnetic fields that are smaller and larger than the ambient Earth's geomagnetic field. The question of the effect of magnetic fields of values higher than the Earth's is gaining importance with the increasing effect of anthropogenic magnetic and electromagnetic fields in aquatic ecosystems. This review draws together the results of studies on the effect and reception of natural and human-generated magnetic fields on fishes at various stages of ontogeny, chronologically arranged from gametes, through embryonic development, embryonic and larval motor function, directional reactions of embryos and larvae, orientation of fishes, to the mechanisms of magnetic field reception. The present state of knowledge indicates a common nature of effect on various ontogenetic stages of fishes. However, understanding of the mechanisms of magnetic sense in fishes and its relevance for ecological outcomes highlights that further progress requires more detailed research.

Journal ArticleDOI
TL;DR: A sample of 67 European hake Merluccius merluCCius were examined to highlight the ingestion of microplastics in the Tyrrhenian Sea and 31 black fibres were found in the stomach contents corresponding to 46.3% of the specimens.
Abstract: A sample of 67 European hake Merluccius merluccius were examined to highlight the ingestion of microplastics in the Tyrrhenian Sea. In all samples, 31 black fibres were found in the stomach contents corresponding to 46.3% of the specimens. The data presented here could be important for the implementation of the EU Marine Strategy Framework Directive in Mediterranean waters.

Journal ArticleDOI
TL;DR: The results indicated large S. mokarran are apex predators primarily relying on other sharks and rays for their diet, with a preference for benthic resources such as Australian cownose rays Rhinoperon neglecta during the austral summer.
Abstract: Great hammerhead sharks Sphyrna mokarran are the largest member of Sphyrnidae, yet the roles of these large sharks in the food webs of coastal ecosystems are still poorly understood. Here we obtained samples of muscle, liver and vertebrae from large S. mokarran (234–383 cm total length; L) caught as by-catch off eastern Australia and used stable-isotope analyses of δN, δC and δS to infer their resource use and any associated ontogenetic patterns. The results indicated large S. mokarran are apex predators primarily relying on other sharks and rays for their diet, with a preference for benthic resources such as Australian cownose rays Rhinoperon neglecta during the austral summer. Teleosts, cephalopods and crustaceans were not significant components of S. mokarran diets, though some conspecifics appeared to rely on more diverse resources over the austral summer. Ontogenetic shifts in resource use were detected but trajectories of the increases in trophic level varied among individuals. Most S. mokarran had non-linear trajectories in ontogenetic resource-use shifts implying size was not the main explanatory factor. Stable isotope values of δC and δS in muscle suggest S. mokarran span coastal, pelagic and benthic food webs in eastern Australia.

Journal ArticleDOI
TL;DR: The review illustrates how study of excavated fish bones, otoliths and shells can inform understanding of changes in biogeography, including the previous distribution of lost species, and long-term fluctuations in the aquatic environment, including climate change.
Abstract: This paper explores the past and potential contribution of archaeology to marine historical ecology. The primary focus is European fishing of marine and diadromous taxa, with global comparisons highlighting the wider applicability of archaeological approaches. The review illustrates how study of excavated fish bones, otoliths and shells can inform our understanding of: (a) changes in biogeography, including the previous distribution of lost species; (b) long-term fluctuations in the aquatic environment, including climate change; (c) the intensity of exploitation and other anthropogenic effects; (d) trade, commodification and globalisation. These issues are also relevant to inform fisheries conservation and management targets. Equally important, the long (pre)history of European fishing raises awareness of our ecological heritage debt, owed for centuries of wealth, sustenance and well-being, and for which we share collective responsibility. This debt represents both a loss and a reason for optimism, insofar as it is a reservoir of potential to be filled by careful stewardship of our rivers, lakes, seas and oceans.

Journal ArticleDOI
TL;DR: It is argued that the future of recreational fisheries and indeed many wild fish populations and aquatic ecosystems depends on having responsible and sustainable (R&S) recreational fisheries whilst, where possible, addressing, or at least lobbying for increased awareness about the threats to recreational fisheries emanating from outside the sector (e.g., climate change).
Abstract: Recreational fisheries that use rod and reel (i.e., angling) operate around the globe in diverse freshwater and marine habitats, targeting many different gamefish species and engaging at least 220 million participants. The motivations for fishing vary extensively; whether anglers engage in catch-and-release or are harvest-oriented, there is strong potential for recreational fisheries to be conducted in a manner that is both responsible and sustainable. There are many examples of recreational fisheries that are well-managed where anglers, the angling industry and managers engage in responsible behaviours that both contribute to long-term sustainability of fish populations and the sector. Yet, recreational fisheries do not operate in a vacuum; fish populations face threats and stressors including harvest from other sectors as well as environmental change, a defining characteristic of the Anthropocene. We argue that the future of recreational fisheries and indeed many wild fish populations and aquatic ecosystems depends on having responsible and sustainable (R&S) recreational fisheries whilst, where possible, addressing, or at least lobbying for increased awareness about the threats to recreational fisheries emanating from outside the sector (e.g., climate change). Here, we first consider how the concepts of R&S intersect in the recreational fishing sector in an increasingly complex socio-cultural context. Next, we explore the role of the angler, angling industry and decision-makers in achieving R&S fisheries. We extend this idea further by considering the consequences of a future without recreational fisheries (either because of failures related to R&S) and explore a pertinent case study situated in Uttarakahand, India. Unlike other fisheries sectors where the number of participants is relatively small, recreational angling participants are numerous and widespread, such that if their actions are responsible, they have the potential to be a key voice for conservation and serve as a major force for good in the Anthropocene. What remains to be seen is whether this will be achieved, or if failure will occur to the point that recreational fisheries face increasing pressure to cease, as a result of external environmental threats, the environmental effects of recreational fishing and emerging ethical concerns about the welfare of angled fish.

Journal ArticleDOI
TL;DR: Standard metabolic rate derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed, however, maximum metabolic rate estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress.
Abstract: In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg-1 h-1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg-1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies.

Journal ArticleDOI
TL;DR: An up-to-date review of what is known about the biology of passive electroreception and how this knowledge can assist in understanding the ecological consequences of responding to electric and magnetic stimuli by electroreceptive fish in the marine environment is presented.
Abstract: Electroreception in marine fishes occurs across a variety of taxa and is best understood in the chondrichthyans (sharks, skates, rays, and chimaeras). Here, we present an up-to-date review of what is known about the biology of passive electroreception and we consider how electroreceptive fishes might respond to electric and magnetic stimuli in a changing marine environment. We briefly describe the history and discovery of electroreception in marine Chondrichthyes, the current understanding of the passive mode, the morphological adaptations of receptors across phylogeny and habitat, the physiological function of the peripheral and central nervous system components, and the behaviours mediated by electroreception. Additionally, whole genome sequencing, genetic screening and molecular studies promise to yield new insights into the evolution, distribution, and function of electroreceptors across different environments. This review complements that of electroreception in freshwater fishes in this special issue, which provides a comprehensive state of knowledge regarding the evolution of electroreception. We conclude that despite our improved understanding of passive electroreception, several outstanding gaps remain which limits our full comprehension of this sensory modality. Of particular concern is how electroreceptive fishes will respond and adapt to a marine environment that is being increasingly altered by anthropogenic electric and magnetic fields.

Journal ArticleDOI
TL;DR: It is concluded that achieving multispecies MSY may depend more upon setting reasonable biomass targets and faithfully applying a harvest control rule approach rather than determining the best possible Fs for each stock.
Abstract: The concept of an optimum yield at intermediate levels of fishing (the so called maximum sustainable yield or MSY) has been with us since the 1930s and is now enshrined in legislation as a key objective of fisheries management. The concept seems intuitively reasonable and is readily applicable to a single stock treated in isolation and assuming a constant environment. However, translating this concept into a mixed and multispecies fishery, where there are complex trade-offs between fleets and stocks and in general no simple optimum solution, has been problematic. Here I introduce a framework for thinking about multispecies MSY in terms of an integrated risk of stock depletion and expected long-term yield. Within this framework I consider the performance of a set of simple harvest control rules based upon a single-limit fishing mortality rate (F) which is common to all stocks and a target biomass which is a set fraction of a stock's virgin biomass. Using a multispecies management strategy evaluation, I compare expected outcomes for a set of these harvest control rules with alternative scenarios, in which each stock has its own F based on the assessment process. I find that the simple framework can produce outcomes that are similar to those from the more sophisticated estimates of F. I therefore conclude that achieving multispecies MSY may depend more upon setting reasonable biomass targets and faithfully applying a harvest control rule approach rather than determining the best possible Fs for each stock.

Journal ArticleDOI
TL;DR: The results suggest that the blue jack mackerel went through a bottleneck event, followed by a recent population expansion, and suggests the existence of a single panmictic population throughout the species' full range.
Abstract: Blue jack mackerel Trachurus picturatus collected at six sampling locations of the north-east Atlantic Ocean (Azores, Madeira, Canaries, and Matosinhos, Peniche and Portimao, mainland Portugal) and one location in the Mediterranean (Sicily), were used to examine the genetic structure of this species. Three mitochondrial gene regions (cytochrome c oxidase subunit I, cytochrome b and control region) were used to study the genetic structure of the species in Macaronesia, as well as to compare the genetic diversity of this region with published results from its eastern distribution. All markers indicated the absence of genetic structure among populations, with high indices of genetic diversity. These results suggest that the species went through a bottleneck event, followed by a recent population expansion. Moreover, the comparison with previously published results from the T. picturatus Mediterranean distribution suggests the existence of a single panmictic population throughout the species' full range. This was, however, an unexpected result since other methodologies have shown the presence of, at least, three different population-units in the NE Atlantic Ocean.

Journal ArticleDOI
Hiroshi Ueda1
TL;DR: Olfactory functions are reviewed and it is revealed that the long-term stability of dissolved free amino-acid composition in the natal stream is crucial for olfactory imprinting and homing in Oncorhynchus spp.
Abstract: Juvenile Oncorhynchus spp. can memorise their natal stream during downstream migration; juveniles migrate to feed during their growth phase and then they migrate long distances from their feeding habitat to their natal stream to reproduce as adults. Two different sensory mechanisms, olfaction and navigation, are involved in the imprinting and homing processes during short-distance migration within the natal stream and long-distance migration in open water, respectively. Here, olfactory functions are reviewed from both neurophysiological studies on the olfactory discrimination ability of natal stream odours and neuroendocrinological studies on the hormonal controlling mechanisms of olfactory memory formation and retrieval in the brain. These studies revealed that the long-term stability of dissolved free amino-acid composition in the natal stream is crucial for olfactory imprinting and homing. Additionally, the brain-pituitary-thyroid and brain-pituitary-gonadal hormones play important roles in olfactory memory formation and retrieval, respectively. Navigation functions were reviewed from physiological biotelemetry techniques with sensory interference experiments during the homing migration of anadromous and lacustrine Oncorhynchus spp. The experiments demonstrated that Oncorhynchus spp. used compass navigation mechanisms in the open water. These findings are discussed in relation to the sensory mechanisms involved in natal stream imprinting and homing in Oncorhynchus spp.

Journal ArticleDOI
TL;DR: Analysis of reproductive traits from 118 bull sharks caught along Reunion Island coasts (Western Indian Ocean), including 16 gravid females, provides valuable information for both shark risk management and conservation of the species in the Western Indian Ocean.
Abstract: To improve understanding of bull shark Carcharhinus leucas reproductive biology, we analysed reproductive traits from 118 bull sharks caught along Reunion Island coasts (Western Indian Ocean), including 16 gravid females. Specific microsatellite loci were used to investigate the frequency of multiple paternity. Males and females reached maturity at c. 234 cm and 257 cm total length (LT ), respectively, and litter sizes ranged from 5 to 14 embryos. Analysis of the 16 litters collected in various months of the year indicated that parturition occurs between October and December, with a size at birth c. 60-80 cm LT and that the gestation period is probably c. 12 months. Assuming a 1 year resting period and a period of sperm storage (4-5 months) between mating (in June-September) and fertilisation, the reproductive cycle of bull sharks at Reunion Island would be biennial. At least 56.25% of the litters investigated were polyandrous, sired by 2-5 males. Several males that each sired several litters conceived during the same or distinct mating seasons were detected, suggesting both a seasonal aggregation of sharks to mate and some male fidelity to mating site. Altogether, these findings provide valuable information for both shark risk management and conservation of the species in the Western Indian Ocean.


Journal ArticleDOI
TL;DR: Higher α-diversity and lower β-d diversity was discovered in managed gravel pit lakes compared with unmanaged lakes, suggesting that recreational-fisheries management did not foster the spread of exotic species in the study region.
Abstract: Gravel pit lakes are novel ecosystems that can be colonized by fish through natural or anthropogenic pathways. In central Europe, many of them are managed by recreational anglers and thus experience regular fish stocking. However, also unmanaged gravel pits may be affected by stocking, either through illegal fish introductions or, occasionally, by immigration from connected water bodies. We sampled 23 small (< 20 ha) gravel pit lakes (16 managed and 7 unmanaged) in north-western Germany using littoral electrofishing and multimesh gillnets. Our objective was to compare the fish biodiversity in gravel pit lakes in the presence or absence of recreational fisheries. Given the size of the sampled lakes, we expected species poor communities and elevated fish diversity in the managed systems due to regular stocking of game fish species. Our study lakes were primarily mesotrophic and did not differ in key abiotic and biotic environmental characteristics. Lakes of both management types hosted similar fish abundances and biomasses, but were substantially different in terms of fish community structure and species richness. Fish were present in all lakes, with a minimum of three species. Higher α-diversity and lower β-diversity was discovered in managed gravel pit lakes compared to unmanaged lakes. Consequently, recreational-fisheries management fostered homogenization of fish communities, by stocking a similar set of fish species desired by anglers such as piscivorous fish and large bodied cyprinids. However, unmanaged gravel pit lakes were also affected by human-mediated colonization, presumably by illegal fish releases. Hardly any non-native species were detected, suggesting that recreational-fisheries management did not foster the spread of exotic species in our study region.

Journal ArticleDOI
TL;DR: In this study, male-to-female sex reversal in male Epinephelus coioides was successfully induced by social isolation and enable us to study the physiological control of sex change, not only from female to male, but also from male to female.
Abstract: Socially controlled sex change in teleosts is a dramatic example of adaptive reproductive plasticity. In many cases, the occurrence of sex change is triggered by a change in the social context, such as the disappearance of the dominant individual. The orange-spotted grouper Epinephelus coioides is a typical protogynous hermaphrodite fish that changes sex from female to male and remains male throughout its life span. In this study, male-to-female sex reversal in male Epinephelus coioides was successfully induced by social isolation. The body length and mass, gonadal change, serum sex steroid hormone levels and sex-related gene expression patterns during the process of socially controlled male-to-female sex reversal in E. coioides were systematically examined. This report investigates the physiological mechanisms of the socially controlled male-to-female sex reversal process in a protogynous hermaphrodite grouper species. The results enable us to study the physiological control of sex change, not only from female to male, but also from male to female.

Journal ArticleDOI
TL;DR: Evidence for disrupted visual acuity is provided as a potential mechanism underlying fish responses, such as decreased foraging efficiency, to increased turbidity and indicates that algal turbidity will probably be more detrimental to visual processes than sedimentary turbidity.
Abstract: The objectives of this study were to determine the effects of different forms of elevated turbidity on the visual acuity of two native Lake Erie fishes and to assess the response of fishes from different trophic levels to elevated turbidity. Additionally, the role of visual morphology (e.g., eye and optic lobe size) on visual acuity was evaluated across visual environments. Reaction distance, a behavioural proxy for measures of visual acuity, was measured for a top predator, walleye Sander vitreus and a forage fish, emerald shiner Notropis atherinoides. In both S. vitreus (n = 27) and N. atherinoides (n = 40) reaction distance across all types of turbidity (sedimentary, algal, sedimentary + algal; 20 NTU) was approximately 50% lower relative to the clear treatment. Reaction distance was further reduced in algal compared with sedimentary turbidity for wild-caught S. vitreus. Eye and brain morphology also influenced reaction distance across turbidity treatments, such that larger relative eye and brain metrics were positively correlated with reaction distance. This study provides evidence for disrupted visual acuity as a potential mechanism underlying fish responses, such as decreased foraging efficiency, to increased turbidity and further indicates that algal turbidity will probably be more detrimental to visual processes than sedimentary turbidity. With the increasing occurrence and severity of harmful algal blooms due to cultural eutrophication globally, this could have significant implications for predator-prey relationships in aquatic systems.

Journal ArticleDOI
TL;DR: Oxynoemacheilus cemali sp.
Abstract: Oxynoemacheilus cemali sp. nov. is described from the Coruh River drainage in the eastern Black Sea basin. One molecular marker (coI), 25 morphometric and four meristic characters were analysed. Oxynoemacheilus cemali is distinguished from O. kosswigi, O. banarescui, O. samanticus and O. angorae in the Black Sea basin by having a suborbital groove in males, an axillary lobe at the pelvic-fin base, no dorsal adipose crest on the caudal peduncle, a slightly-forked caudal fin and 7-15 dark grey dorsal saddles. Morever, Oxynoemacheilus cemali is distinguished by commonly having 9-15 irregularly-shaped dark-grey bars on the flank posterior to the dorsal-fin origin or, rarely having a mottled pattern or 4-6 irregularly shaped dark-grey bars on the flank posterior to the dorsal-fin origin. Oxynoemacheilus cemali is also distinguished from the closely related species O. araxensis and O. cyri, distributed outside the Black Sea basin, by having 15 and 31 diagnostic nucleotide substitutions in the coI barcode region, respectively.